• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Control of Multiple Actuators using Single IEHEC Pump/Motor

Bekele, Teshale, Åman, Rafael, Handroos, Heikki 28 April 2016 (has links) (PDF)
The awareness and concern of our environment together with legislation have set more and more tightening demands for energy efficiency of non-road mobile machinery(NRMM). Integrated electro- hydraulic energy converter (IEHEC) has been developed in Lappeenranta University of Technology (LUT) /1/. The elimination of resistance flow, and the recuperation of energy makes it very efficient alternative. The difficulties of IEHEC machine to step to the market has been the requirement of one IEHEC machine per one actuator. The idea is to switch IEHEC between two actuators of log crane using fast on/off valves. The control system architecture is introduced. The system has been simulated in co-simulation using Simulink/Mevea. The simulated responses of pumpcontrolled system is compared to the responses of the conventional valve-controlled system.
2

A Thermal Analysis of Direct Driven Hydraulics

Minav, Tatiana, Papini, Luca, Pietola, Matti 02 May 2016 (has links) (PDF)
This paper focuses on thermal analysis of a direct driven hydraulic setup (DDH). DDH combines the benefits of electric with hydraulic technology in compact package with high power density, high performance and good controllability. DDH enables for reduction of parasitic losses for better fuel efficiency and lower operating costs. This one-piece housing design delivers system simplicity and lowers both installation and maintenance costs. Advantages of the presented architecture are the reduced hydraulic tubing and the amount of potential leakage points. The prediction of the thermal behavior and its management represents an open challenge for the system as temperature is a determinant parameter in terms of performance, lifespan and safety. Therefore, the electro-hydraulic model of a DDH involving a variable motor speed, fixed-displacement internal gear pump/motors was developed at system level for thermal analysis. In addition, a generic model was proposed for the electric machine, energy losses dependent on velocity, torque and temperature was validated by measurements under various operative conditions. Results of model investigation predict ricing of temperature during lifting cycle, and flattened during lowering in pimp/motor. Conclusions are drawn concerning the DDH thermal behavior.
3

The Control of Multiple Actuators using Single IEHEC Pump/Motor

Bekele, Teshale, Åman, Rafael, Handroos, Heikki January 2016 (has links)
The awareness and concern of our environment together with legislation have set more and more tightening demands for energy efficiency of non-road mobile machinery(NRMM). Integrated electro- hydraulic energy converter (IEHEC) has been developed in Lappeenranta University of Technology (LUT) /1/. The elimination of resistance flow, and the recuperation of energy makes it very efficient alternative. The difficulties of IEHEC machine to step to the market has been the requirement of one IEHEC machine per one actuator. The idea is to switch IEHEC between two actuators of log crane using fast on/off valves. The control system architecture is introduced. The system has been simulated in co-simulation using Simulink/Mevea. The simulated responses of pumpcontrolled system is compared to the responses of the conventional valve-controlled system.
4

A Thermal Analysis of Direct Driven Hydraulics

Minav, Tatiana, Papini, Luca, Pietola, Matti January 2016 (has links)
This paper focuses on thermal analysis of a direct driven hydraulic setup (DDH). DDH combines the benefits of electric with hydraulic technology in compact package with high power density, high performance and good controllability. DDH enables for reduction of parasitic losses for better fuel efficiency and lower operating costs. This one-piece housing design delivers system simplicity and lowers both installation and maintenance costs. Advantages of the presented architecture are the reduced hydraulic tubing and the amount of potential leakage points. The prediction of the thermal behavior and its management represents an open challenge for the system as temperature is a determinant parameter in terms of performance, lifespan and safety. Therefore, the electro-hydraulic model of a DDH involving a variable motor speed, fixed-displacement internal gear pump/motors was developed at system level for thermal analysis. In addition, a generic model was proposed for the electric machine, energy losses dependent on velocity, torque and temperature was validated by measurements under various operative conditions. Results of model investigation predict ricing of temperature during lifting cycle, and flattened during lowering in pimp/motor. Conclusions are drawn concerning the DDH thermal behavior.

Page generated in 0.073 seconds