91 |
Uniqueness of Positive Solutions for Elliptic Dirichlet ProblemsAli, Ismail, 1961- 12 1900 (has links)
In this paper we consider the question of uniqueness of positive solutions for Dirichlet problems of the form - Δ u(x)= g(λ,u(x)) in B, u(x) = 0 on ϑB,
where A is the Laplace operator, B is the unit ball in RˆN, and A>0. We show that if g(λ,u)=uˆ(N+2)/(N-2) + λ, that is g has "critical growth", then large positive solutions are unique. We also prove uniqueness of large solutions when g(λ,u)=A f(u) with f(0) < 0, f "superlinear" and monotone. We use a number of methods from nonlinear functional analysis such as variational identities, Sturm comparison theorems and methods of order.
We also present a regularity result on linear elliptic equation where a coefficient has critical growth.
|
92 |
Radially Symmetric Solutions to a Superlinear Dirichlet Problem in a BallKurepa, Alexandra 08 1900 (has links)
In this paper we consider a radially symmetric nonlinear Dirichlet problem in a ball, where the nonlinearity is "superlinear" and "superlinear with jumping."
|
93 |
Instabilidade de pontos de equilíbrio de alguns sistemas lagrangeanos / Instability of Equilibrium Points of Some Lagrangian SystemsRicardo dos Santos Freire Junior 31 August 2007 (has links)
Neste trabalho, estudamos algumas inversões parciais do teorema de Dirichlet-Lagrange, essencialmente estendendo os resultados em dois graus de liberdade de Garcia e Tal (2003) para algumas situações em $R^$. Mais precisamente, um dos objetivos é mostrar, no contexto da mecânica lagrangeana, que se há um split da energia potencial em uma parte no plano cujo jato $k$ mostra que ela não tem mínimo no ponto de equilíbrio e existe o jato $k-1$ do seu gradiente, e a outra em $R^$ que tenha mínimo no ponto de equilíbrio, este é instável. A instabilidade do ponto de equilíbrio em estudo é provada mostrando a existência de uma trajetória assintótica ao mesmo. Para isso, apresentamos um resultado inicial para lagrangeanos com uma forma bem específica e, a seguir, mostramos que a classe de lagrangeanos que descrevemos acima pode ser levada a esta forma, através de uma adequada mudança de coordenadas espaciais. Além disso, consideramos a extensão desses resultados a sistemas com forças giroscópicas. / In this work, we study some partial inversions of the Lagrange-Dirichlet theorem, extending the results in two degrees of freedom of Garcia and Tal (2003) for some other situations in $\\mathbb^$. More precisely, one of our objectives is to show, in the context of lagrangian mechanics, that if there is a splitting of the potential energy in one part in the plane which its $k$-jet shows that it does not have a minimum in the equilibrium and there exists the $(k-1)$-jet of its gradient, and the other part in $\\mathbb^$ has a minimum in the equilibrium, then the equilibrium point is unstable. Instability of the equilibrium point is shown by proving the existence of an assymptotic trajectory to it. For this purpose, first it is proven a result for lagrangians with a specific form and, next, we show that the class of lagrangians we are interested in can be transformed into this specific form by a subtle change of spatial coordinates. Finally, we consider the extension of this results to systems with gyroscopic forces.
|
94 |
Instabilidade de pontos de equilíbrio de alguns sistemas lagrangeanos / Instability of Equilibrium Points of Some Lagrangian SystemsFreire Junior, Ricardo dos Santos 31 August 2007 (has links)
Neste trabalho, estudamos algumas inversões parciais do teorema de Dirichlet-Lagrange, essencialmente estendendo os resultados em dois graus de liberdade de Garcia e Tal (2003) para algumas situações em $R^$. Mais precisamente, um dos objetivos é mostrar, no contexto da mecânica lagrangeana, que se há um split da energia potencial em uma parte no plano cujo jato $k$ mostra que ela não tem mínimo no ponto de equilíbrio e existe o jato $k-1$ do seu gradiente, e a outra em $R^$ que tenha mínimo no ponto de equilíbrio, este é instável. A instabilidade do ponto de equilíbrio em estudo é provada mostrando a existência de uma trajetória assintótica ao mesmo. Para isso, apresentamos um resultado inicial para lagrangeanos com uma forma bem específica e, a seguir, mostramos que a classe de lagrangeanos que descrevemos acima pode ser levada a esta forma, através de uma adequada mudança de coordenadas espaciais. Além disso, consideramos a extensão desses resultados a sistemas com forças giroscópicas. / In this work, we study some partial inversions of the Lagrange-Dirichlet theorem, extending the results in two degrees of freedom of Garcia and Tal (2003) for some other situations in $\\mathbb^$. More precisely, one of our objectives is to show, in the context of lagrangian mechanics, that if there is a splitting of the potential energy in one part in the plane which its $k$-jet shows that it does not have a minimum in the equilibrium and there exists the $(k-1)$-jet of its gradient, and the other part in $\\mathbb^$ has a minimum in the equilibrium, then the equilibrium point is unstable. Instability of the equilibrium point is shown by proving the existence of an assymptotic trajectory to it. For this purpose, first it is proven a result for lagrangians with a specific form and, next, we show that the class of lagrangians we are interested in can be transformed into this specific form by a subtle change of spatial coordinates. Finally, we consider the extension of this results to systems with gyroscopic forces.
|
95 |
New Developments on Bayesian Bootstrap for Unrestricted and Restricted DistributionsHosseini, Reyhaneh 29 April 2019 (has links)
The recent popularity of Bayesian inference is due to the practical advantages of the Bayesian approach. The Bayesian analysis makes it possible to reflect ones prior
beliefs into the analysis. In this thesis, we explore some asymptotic results in Bayesian nonparametric inference for restricted and unrestricted space of distributions. This thesis is divided into two parts. In the first part, we employ the Dirichlet process in a hypothesis testing framework to propose a Bayesian nonparametric chi-squared goodness-of-fit test. Our suggested method corresponds to Lo's Bayesian bootstrap procedure for chi-squared goodness-of-fit test. Indeed, our bootstrap rectifies some shortcomings of regular bootstrap which only counts number of observations falling in each bin in contingency tables. We consider the Dirichlet process as the prior for the distribution of data and carry out the test based on the Kullback-Leibler distance between the Dirichlet process posterior and the hypothesized distribution. We prove that this distance asymptotically converges to the same chi-squared distribution as the classical frequentist's chi-squared test. Moreover, the results are generalized to the chi-squared test of independence for contingency tables. In the second part, our main focus is on Bayesian nonparametric inference for
a restricted group of distributions called spherically symmetric distributions. We describe a Bayesian nonparametric approach to perform an inference for a bivariate spherically symmetric distribution. We place a Dirichlet invariant process prior on the set of all bivariate spherically symmetric distributions and derive the Dirichlet invariant process posterior. Indeed, our approach is an extension of the Dirichlet invariant process for the symmetric distributions on the real line to bivariate spherically symmetric distribution where the underlying distribution is invariant under a finite group of rotations. Further, we obtain the Dirichlet invariant process posterior for the infinite transformation group and we prove that it approaches a certain Dirichlet process. Finally, we develop our approach to obtain the Bayesian nonparametric posterior distribution for functionals of the distribution's support when the support satisfies certain symmetry conditions. When symmetry holds with respect to the parallel lines of axes (for example, in two dimensional space x = a and y = b) we employ our approach to approximate the distribution of certain functionals such as area and perimeter for the support of the distribution. This suggests a Bayesian nonparametric bootstrapping scheme. The estimates can be derived based on posterior averaging. Then, our simulation results demonstrate that our suggested bootstrapping technique improves the accuracy of the estimates.
|
96 |
Integral Moments of Quadratic Dirichlet L-functions: A Computational PerspectiveAlderson, Matthew 27 April 2010 (has links)
In recent years, the moments of L-functions has been a topic of growing interest in the field of analytic number theory. New techniques, including applications of Random Matrix Theory and multiple Dirichlet series, have lead
to many well-posed theorems and conjectures for the moments of various L-functions. In this thesis, we theoretically and numerically examine the integral moments of quadratic Dirichlet $L$-functions. In particular, we
exhibit and discuss the conjectures for the moments which result from the applications of Random Matrix Theory, number theoretic heuristics, and the theory of multiple Dirichlet series. In the case of the cubic moment, we further numerically investigate the possible existence of additional lower order main terms.
|
97 |
Integral Moments of Quadratic Dirichlet L-functions: A Computational PerspectiveAlderson, Matthew 27 April 2010 (has links)
In recent years, the moments of L-functions has been a topic of growing interest in the field of analytic number theory. New techniques, including applications of Random Matrix Theory and multiple Dirichlet series, have lead
to many well-posed theorems and conjectures for the moments of various L-functions. In this thesis, we theoretically and numerically examine the integral moments of quadratic Dirichlet $L$-functions. In particular, we
exhibit and discuss the conjectures for the moments which result from the applications of Random Matrix Theory, number theoretic heuristics, and the theory of multiple Dirichlet series. In the case of the cubic moment, we further numerically investigate the possible existence of additional lower order main terms.
|
98 |
Discrete moments of the Riemann zeta function and Dirichlet L-functions / Riemann'o dzeta funkcijos ir Dirichlet L-funkcijų diskretieji momentaiKalpokas, Justas 19 November 2012 (has links)
In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems that concern the integers. It is often said to have begun with Dirichlet's introduction of Dirichlet L-functions. In analytic number theory one of the main investigation objects is the Riemann zeta function. The Riemann hypothesis states that all non-trivial zeros of the Riemann zeta function lie on the critical line. In the thesis we investigate value distribution of the Riemann zeta function on the critical line. To do so we use the curve of the Riemann zeta function on the critical line. A problem connected to the curve asks the question whether the curve is dense in the complex plane. We prove that the curve expands to all directions on the complex plane. A separete case of the main result can be stated as follows Riemann zeta function has infinetly many negative values on the critical line and they are unbounded. / Analizinė skaičių teorija yra skaičių teorijos dalis, kuri, naudodama matematinės analizės ir kompleksinio kintamojo funkcijų tyrimo metodus, sprendžia uždavinius susijusius su sveikaisiais skaičiais. Manoma, kad analizinės skaičių teorijos pradžią žymi Dirichlet eilučių ir Dirichlet L-funkcijų taikymai. Vienas iš pagrindinių analizinės skaičių teorijos tyrimo objektų yra Riemann’o dzeta funkcija. Riemann’o hipotezė teigia, kad visi netrivialieji nuliai yra ant kritinės tiesės. Disertacijoje nagrinėjamas Riemann’o dzeta funckijos reikšmių pasiskirstymas ant kritinės tiesės. Tam pasitelkiama Riemann’o dzeta funkcijos kreivė. Svarbus klausimas susijęs su kreive yra ar ši kreivė yra visur tiršta kompleksinių skaičių plokštumoje. Disertacijoje įrodoma, kad kreivė plečiasi į visas puse kompleksinių skaičių plokštumoje. Atskiras disertacijos pagrindinio rezultato atvejis gali būti formuluojamas taip – Riemann’o dzeta funkcija ant kritinės tiesės įgyja be galo daug neigiamų reikšmių, kurios yra neaprėžtos.
|
99 |
Riemann'o dzeta funkcijos ir Dirichlet L-funkcijų diskretieji momentai / Discrete moments of the Riemann zeta function and Dirichlet L-functionsKalpokas, Justas 19 November 2012 (has links)
Analizinė skaičių teorija yra skaičių teorijos dalis, kuri, naudodama matematinės analizės ir kompleksinio kintamojo funkcijų tyrimo metodus, sprendžia uždavinius susijusius su sveikaisiais skaičiais. Manoma, kad analizinės skaičių teorijos pradžią žymi Dirichlet eilučių ir Dirichlet L-funkcijų taikymai. Vienas iš pagrindinių analizinės skaičių teorijos tyrimo objektų yra Riemann’o dzeta funkcija. Riemann’o hipotezė teigia, kad visi netrivialieji nuliai yra ant kritinės tiesės. Disertacijoje nagrinėjamas Riemann’o dzeta funckijos reikšmių pasiskirstymas ant kritinės tiesės. Tam pasitelkiama Riemann’o dzeta funkcijos kreivė. Svarbus klausimas susijęs su kreive yra ar ši kreivė yra visur tiršta kompleksinių skaičių plokštumoje. Disertacijoje įrodoma, kad kreivė plečiasi į visas puse kompleksinių skaičių plokštumoje. Atskiras disertacijos pagrindinio rezultato atvejis gali būti formuluojamas taip – Riemann’o dzeta funkcija ant kritinės tiesės įgyja be galo daug neigiamų reikšmių, kurios yra neaprėžtos. / In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems that concern the integers. It is often said to have begun with Dirichlet's introduction of Dirichlet L-functions. In analytic number theory one of the main investigation objects is the Riemann zeta function. The Riemann hypothesis states that all non-trivial zeros of the Riemann zeta function lie on the critical line. In the thesis we investigate value distribution of the Riemann zeta function on the critical line. To do so we use the curve of the Riemann zeta function on the critical line. A problem connected to the curve asks the question whether the curve is dense in the complex plane. We prove that the curve expands to all directions on the complex plane. A separete case of the main result can be stated as follows Riemann zeta function has infinetly many negative values on the critical line and they are unbounded.
|
100 |
Criterios de solubilidade do problema de Dirichlet / Criteria for the solvebility of the Dirichlet problemPresoto, Adilson Eduardo, 1983- 18 March 2008 (has links)
Orientadores: Djairo Guedes de Figueiredo, Francisco Odair de Paiva / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-10T16:14:26Z (GMT). No. of bitstreams: 1
Presoto_AdilsonEduardo_M.pdf: 798633 bytes, checksum: be0d791852ff6c964303c43174b753c4 (MD5)
Previous issue date: 2008 / Resumo: Abordaremos diferentes métodos da Teoria do Potencial desenvolvidos no fim do século XIX e no começo do século XX para solucionar o Problema de Dirichlet. Iniciamos o primeiro capítulo com o Método da Varredura de Poincaré que transcendeu os anteriores e focalizou o problema sob uma nova óptica. Neste método, uma função harmônica, num domínio geral, era obtida, uma vez que condição de contorno fosse dada. Então condições na fronteira eram analizadas afim de que a função harmônica fosse, de fato, a solução do Problema de Dirichlet. Até então, as principais resoluções se baseavam no Princípio de Dirichlet que admitia soluções minimizantes para integrais de energia, se fundamentando em argumentos físicos. Contudo, tais argumentos continham alguns deslizes matemáticos como a admissão do mínimo para essas integrais. Posteriormente, surgiram os métodos de Perron e de Wiener dentro do espírito o Método do Poincaré. Ainda no primeiro capítulo, apresentamos um antecessor do método de Poincaré: o "Método de Schwarz. O segundo capítulo é dedicado ao Método das Equações Intregrais de Fredholm, no qual a Análise FUncional e as Equações Diferenciais Parciais caminharam lado a lado. Por fim, no último capítulo temos um resultado devido a Wiener que caracteriza os pontos regulares em termos de convergência de uma série envolvendo a capacidade de alguns conjuntos / Abstract: We will present different methods of Potential Theory developed at the end of the nineteenth century and the beginning of the twentieth century to solve the Dirichlet Problem. We start in the first chapter, with the Poincaré's Sweepping out Method, which transcended the former ones and focused the problem in a new insight. In this method, a harmonic function in a general domain is obtained, once a boundary condition is given. Then, conditions in the boundary are discussed so that this harmonic function is indeed the solution of the Dirichlet Problem. Until then, the key results were based on Dirichlet PrincipIe which admitted minimizing solutions to energy integraIs, by using some physical arguments. However, such arguments contained a few Mathematical gaps like the admission of a minimun to these integrals. Later, it appeared the Perron and Wiener Methods in the spirit of the Poincaré Method. Even in the first chapter, we discuss a predecessor of Poincaré's Method: the Schwarz's Method. The second chapter is devoted to the Integral Equations Method, where the Functional Analysis and Differential Equations walked side by side. Finally, the last chapter is a result due to Wiener that characterizes the regular points in terms of covergence of a series involving the capacity of some sets / Mestrado / Matematica - Analise- Equações Diferenciais e Parciais / Mestre em Matemática
|
Page generated in 0.0528 seconds