• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 105
  • 47
  • 28
  • 18
  • 8
  • 8
  • 6
  • 5
  • 4
  • 3
  • 1
  • Tagged with
  • 290
  • 290
  • 229
  • 63
  • 59
  • 57
  • 55
  • 54
  • 53
  • 48
  • 38
  • 38
  • 31
  • 31
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Shear Rupture of Massive Brittle Rock under Constant Normal Stress and Stiffness Boundary Conditions

Bewick, Robert P. 07 January 2014 (has links)
The shear rupture of massive (intact non-jointed) brittle rock in underground high stress mines occurs under a variety of different boundary conditions ranging from constant stress (no resistance to deformation) to constant stiffness (resistance to deformation). While a variety of boundary conditions exist, the shear rupture of massive rock in the brittle field is typically studied under constant stress boundary conditions. According to the theory, the fracturing processes leading to shear rupture zone creation occur at or near peak strength with a shear rupture surface created in the post-peak region of the stress-strain curve. However, there is evidence suggesting that shear rupture zone creation can occur pre-peak. Limited studies of shear rupture in brittle rock indicate pre-peak shear rupture zone creation under constant stiffness boundary conditions. This suggests that the boundary condition influences the shear rupture zone creation characteristics. In this thesis, shear rupture zone creation in brittle rock is investigated in direct shear under constant normal stress and normal stiffness boundary conditions. It is hypothesized that the boundary condition under which a shear rupture zone is created influences its characteristics (i.e., shear rupture zone geometry, load-displacement response, shear rupture zone creation relative to the load-displacement curve, and peak and ultimate strengths). In other words, it is proposed that the characteristics of a shear rupture zone are not only a function of the rock or rock mass properties but the boundary conditions under which the rupture zone is created. The hypothesis is tested and proven through a series of simulations using a two dimensional particle based Distinct Element Method (DEM) and its embedded grain based method. The understanding gained from these simulations is then used in the analysis and re-interpretation of rupture zone creation in two mine pillars. This is completed to show the value and practical application of the improved understanding gained from the simulations. The re-interpretation of these case histories suggests that one pillar ruptured predominately under a constant stress boundary condition while the other ruptured under a boundary condition changing from stiffness to stress control.
72

Investigation of Discontinuous Deformation Analysis for Application in Jointed Rock Masses

Khan, Mohammad S. 13 August 2010 (has links)
The Distinct Element Method (DEM) and Discontinuous Deformation Analysis (DDA) are the two most commonly used discrete element methods in rock mechanics. Discrete element approaches are computationally expensive as they involve the interaction of multiple discrete bodies with continuously changing contacts. Therefore, it is very important to ensure that the method selected for the analysis is computationally efficient. In this research, a general assessment of DDA and DEM is performed from a computational efficiency perspective, and relevant enhancements to DDA are developed. The computational speed of DDA is observed to be considerably slower than DEM. In order to identify reasons affecting the computational efficiency of DDA, fundamental aspects of DDA and DEM are compared which suggests that they mainly differ in the contact mechanics, and the time integration scheme used. An in-depth evaluation of these aspects revealed that the openclose iterative procedure used in DDA which exhibits highly nonlinear behavior is one of the main reasons causing DDA to slow down. In order to improve the computational efficiency of DDA, an alternative approach based on a more realistic rock joint behavior is developed in this research. In this approach, contacts are assumed to be deformable, i.e., interpenetrations of the blocks in contact are permitted. This eliminated the computationally expensive open-close iterative procedure adopted in DDA-Shi and enhanced its speed up to four times. In order to consider deformability of the blocks in DDA, several approaches are reported. The hybrid DDA-FEM approach is one of them, although this approach captures the block deformability quite effectively, it becomes computationally expensive for large-scale problems. An alternative simplified uncoupled DDA-FEM approach is developed in this research. The main idea of this approach is to model rigid body movement and the block internal deformation separately. Efficiency and simplicity of this approach lie in keeping the DDA and the FEM algorithms separate and solving FEM equations individually for each block. Based on a number of numerical examples presented in this dissertation, it is concluded that from a computational efficiency standpoint, the implicit solution scheme may not be appropriate for discrete element modelling. Although for quasi-static problems where inertia effects are insignificant, implicit schemes have been successfully used for linear analyses, they do not prove to be advantageous for contact-type problems even in quasi-static mode due to the highly nonlinear behavior of contacts.
73

Shear Rupture of Massive Brittle Rock under Constant Normal Stress and Stiffness Boundary Conditions

Bewick, Robert P. 07 January 2014 (has links)
The shear rupture of massive (intact non-jointed) brittle rock in underground high stress mines occurs under a variety of different boundary conditions ranging from constant stress (no resistance to deformation) to constant stiffness (resistance to deformation). While a variety of boundary conditions exist, the shear rupture of massive rock in the brittle field is typically studied under constant stress boundary conditions. According to the theory, the fracturing processes leading to shear rupture zone creation occur at or near peak strength with a shear rupture surface created in the post-peak region of the stress-strain curve. However, there is evidence suggesting that shear rupture zone creation can occur pre-peak. Limited studies of shear rupture in brittle rock indicate pre-peak shear rupture zone creation under constant stiffness boundary conditions. This suggests that the boundary condition influences the shear rupture zone creation characteristics. In this thesis, shear rupture zone creation in brittle rock is investigated in direct shear under constant normal stress and normal stiffness boundary conditions. It is hypothesized that the boundary condition under which a shear rupture zone is created influences its characteristics (i.e., shear rupture zone geometry, load-displacement response, shear rupture zone creation relative to the load-displacement curve, and peak and ultimate strengths). In other words, it is proposed that the characteristics of a shear rupture zone are not only a function of the rock or rock mass properties but the boundary conditions under which the rupture zone is created. The hypothesis is tested and proven through a series of simulations using a two dimensional particle based Distinct Element Method (DEM) and its embedded grain based method. The understanding gained from these simulations is then used in the analysis and re-interpretation of rupture zone creation in two mine pillars. This is completed to show the value and practical application of the improved understanding gained from the simulations. The re-interpretation of these case histories suggests that one pillar ruptured predominately under a constant stress boundary condition while the other ruptured under a boundary condition changing from stiffness to stress control.
74

Uncertainty Quantification of the Homogeneity of Granular Materials through Discrete Element Modeling and X-Ray Computed Tomography

Noble, Patrick 2012 August 1900 (has links)
Previous research has shown that the sample preparation method used to reconstitute specimens for granular materials can have a significant impact on its mechanistic behavior. As the Discrete Element Method becomes a more popular choice for modeling multiphysics problems involving granular materials, the sample heterogeneity should be correctly characterized in order to obtain accurate results. In order to capture the effect of sample preparation on the homogeneity of the sample, standard procedures were used to reconstitute samples composed of a homogeneous granular material. X-ray computed tomography and image analysis techniques were then used to characterize the spatial heterogeneity of a typical sample. The sample preparation method was modeled numerically using the Discrete Element program PFC3D. The resulting microstructure of the numerical sample was compared to the results of the image analysis to determine if the heterogeneity of the sample could be reproduced correctly for use in Discrete Element Modeling.
75

Development and use of a discrete element model for simulating the bulk strand flow in a rotary drum blender

Dick, Graeme 11 1900 (has links)
In 2006 resin accounted for approximately 17% of the direct manufacturing costs for oriented strand board (OSB). Because of their increased dependency on pMDI-resins, this percentage is likely greater for oriented strand lumber (OSL) and laminated strand lumber (LSL). The cost of PF- and pMDI-resins is expected to face upward pressure as the cost of their primary constituents, natural gas and crude oil, continue to reach new highs. Therefore, there is strong economic incentive to optimize the use of resin in the production of these three products. This can be accomplished by addressing two key issues: reducing resin wastage and optimizing resin distribution on the strands. Both issues will be overcome by focusing on the blending process, where resin is applied to the strands. This work focused on development and use of a discrete element model (DEM) for simulating strand flow in a rotary drum blender using the EDEM software package. EDEM required the input of three material and three interaction properties. Development of the model involved creating the simulated environment (i.e. physical dimensions) and assigning appropriate material and interaction properties given this environment and the assumptions that were made. This was accomplished in two steps, completing baseline bench-top experiments and a literature review to determine appropriate parameters and initial value ranges for these properties, and then fine-tuning these values based on a validation process. Using the validated model, an exploratory study was conducted to determine the effect of four blender design and operating parameters (flight height, number of flights, blender rotational speed, and blender fill level) on bulk strand flow. The results were analyzed with regards to overall trends and by focusing on two perspectives, end users and blender manufacturers. It was found that there was a strong relationship between these key parameters and bulk strand flow. These results suggest that operating parameters of a blender, namely rotational speed and tilt angle, should be linked directly to the blender feed rate to ensure an optimal blending environment is maintained. In addition, manufacturers of blenders must take into consideration the range in final operating conditions when designing and positioning flights.
76

DEM modelling and quantitative validation of flow characteristics and blending of pellets in a planar silo

Kasina, Veera Pratap Reddy January 2016 (has links)
Blending processes in a silo minimise the fluctuations in the property of bulk solids with the blending performance being strongly influenced by the flow pattern and operating mode among other process parameters such as batch size and type of input fluctuations. An accurate prediction of flow characteristics such as flow channel boundary and velocity profiles is important for understanding and quantifying the blending performance, thereby increasing the scope for new design by minimising the number of expensive pilot scale experiments required. In this thesis, the Discrete Element Method (DEM) is deployed to predict and understand the flow characteristics and blending of cylindrical plastic pellets in a planar flat bottom silo and a multi-flow blender (a silo with an insert and a blending tube). The predictions are validated against high-resolution velocity measurements analysed using Particle Image Velocimetry (PIV) technique. A planar model silo was built to measure the flow of pellets using PIV technique. The existing GeoPIV Matlab module was customised to extract the velocity fields in the Eulerian frame of reference and its accuracy has been verified. The developed tool was then applied to quantitatively investigate the mechanism of evolution of flow in a flat bottom silo and the dependency of the state of developed flow on the depth of the planar silo. It was shown that the development of flow during discharge can be divided into two stages: a rapid upward propagation of plug flow followed by a widening of the flow channel with increasing shearing boundaries. The size of the flow channel was found to be increasing with the depth of the silo. For the 100 mm deep silo, the flow is three dimensional with significant retardation in velocity at the frontal walls, whilst a negligible retardation was found for the 20 and 40 mm deep model silos. The thickness and frontal wall friction in planar silos thus play an important role in the development of flow patterns in model silos. In this thesis, DEM model calibration relating the macro-scale bulk friction and micro- scale particle friction at different rolling friction values was developed from DEM simulations of Jenike direct shear box. During the direct shear simulation, a constant normal force was achieved with the use of a shear lid geometry made with glued spheres thereby eliminating the use of a traditional servo control function. The influence of particle rotations and rolling friction on the limiting bulk friction for different particle sliding friction coefficients was explored. The accuracy of the calibration data was assessed by simulating the flow in a flat bottom silo and comparing the model predictions of flow rate, velocity profiles and flow channel boundary with the experiments. A good quantitative agreement was found between the experiment and simulations. The DEM model predictions were also compared with the kinematic model. Following the validation of the model, it was shown that the frontal friction and rolling friction are the influential parameters in simulating the flow patterns such as semi-mass and internal flow. It was further shown that flow transits from semi-mass flow to internal flow with the increase of frontal wall friction. The drastic influence of frontal wall friction on stress, flow patterns and force chains were analysed highlighting its implications on interpretations in 2D test silos. Finally, the developed DEM and PIV tools are employed to investigate blending in a flat bottom and multi-flow blender silo for different flow patterns. The analysis showed that the blending is more effective with the internal flow when compared to semi-mass flow in a flat bottom silo, in both continuous and discontinuous modes for a variety of process conditions such as batch size, the number of recirculation and frequency of input fluctuations. An algorithm was developed to evaluate the blending performance from the spatially averaged Eulerian velocity fields. The flow in a relatively large-scale multi-flow blender comprising nearly 606,000 particles, thereby fully replicating the test silo, was simulated and the challenges in reproducing the test conditions of continuous and discontinuous modes of operation were discussed. The flow patterns and blending were first analysed from the experiments in different configurations of the insert. Using the same input parameters for the model, it was shown that the model predictions of the velocity profiles along the height of the silo are in good agreement with the experiments. Internal flow, mixed flow and mass flow were predicted for the diverging, straight and converging insert configurations respectively and the blending performance for each of these configurations suggests an optimal configuration of the blender thereby demonstrating the potential of PIV and DEM in design optimisation. The possibility of conducting the DEM simulations under increased gravity in order to reduce the computational time has also been explored.
77

Interactions multi-phases et multi-materiaux dans les milieux granulaires / Multi-phase and multi-material interactions in granular media

Chalak, Caroline 01 July 2016 (has links)
La méthode des éléments discrets est utilisée pour étudier deux types d'intéraction dans les matériaux granulaires pour deux applications différentes.La première application introduit un couplage hydromécanique pour étudier le comportement des matériaux granulaires partiellement saturés. Un modèle numérique en régime pendulaire pour les grains sphériques permettant la détermination des aires interfaciales et tenant compte de la rugosité des grains est développé. Sur cette base, l'énergie libre des interfaces est définie, et sa variation se trouve à équilibrer le travail mécanique exercée par le pont liquide sur les particules d'un système à deux grains conformément à la première loi de la thermodynamique. Le modèle permet de détecter l'evolution de l'énergie libre dans les systèmes granulaires deformés et simulés avec la méthode des éléments discrets. Des simulations sur des assemblages réguliers et aléatoires sont présentés pour discuter le concept de la contrainte effective et vérifier si l'expression Love-Weber de contrainte moyennée décrit bien le comportement des matériaux granulaires partiellement saturés pour différentes configurations et aspects mécaniques. Bien souvent censé jouer le rôle de la contrainte effective dans les systèmes multiphasiques, la contrainte moyennée de Love-Weber n'est valable que pour des assemblages réguliers en régime élastique. En cas d'assemblages aléatoires, elle ne compare pas toujours avec les variations de l'énérgie libre élastique. Au pic pour la résistance au cisaillement, Love-Weber vérifie une enveloppe de rupture Mohr-Coulomb unique pour les assemblages avec une granulometrie uniforme; elle peut alors être défini comme une possible formulation de contrainte effective micromécanique dans ce cas. Il est cependant montré que cette hypothèse n'est pas valable pour toutes les configurations de granulometrie possibles.Le modèle pendulaire est couplé avec le modèle funiculaire de Yuan et. al. (2015), ce qui permet la simulation d'un drainage complet. Les résultats montrent que l'addition des ménisques a un impact important sur le comportement mécanique des sols non saturés .La deuxième application incarne les interactions des grains avec un milieu élastique continu pour étudier la compaction des agents de soutènement qui est d'une grande importance dans l'industrie de la production pétrolière. Un tas granulaire est compactée entre deux plaques rigides. La répartition des contraintes induites par le tas d'agents de soutènement sur les plaques est étudiée et reliée à l'ouverture de la fissure et la zone de contact sur chaque plaque. L'influence de l'angle de frottement entre les grains et entre les grains et les plaques sont également étudiés. Les plaques rigides sont remplacés dans une deuxième partie par un bloc rocheux élastique simulé à l'aide de la DEM,en collant des particules entre elles par une très forte cohésion ajoutée aux contacts. La DEM est trouvée capable de simuler un milieu de continu élastique, vue que la comparaison de l'analyse d'un problème d'inclusion d'un disque rigide dans le bloc rocheux discrèt avec les résultats analytiques de Selvadurai (1994) est très proche. La forme dus tas de soutènement déposé à partir du trou de forage par gravité et la géométrie de la fracture pour différentes valeurs de contrainte verticales sont finalement présentés. / The discrete element method is used to study two interaction types in granular materials for two different applications.The first application embodies hydromechanical coupling to study the behavior of unsaturated granular materials. An extended numerical model of pendular bridge for spherical grains is introduced, enabling the determination of interfacial areas and taking into account the roughness of the grains. On this basis, the free energy of interfaces is defined, and its changes are found to balance the mechanical work exerted by the bridge on the particles of a two grain system, following the first law of thermodynamics. The model enables tracking the changes of free energy in deforming granular systems simulated with the discrete element method. Simulations of regular and random packings are presented to discuss the effective stress concept and check whether the Love-Weber expression of averaged stress is able to describe well the behavior of partially saturated granular materials for different configurations and mechanical aspects. Though frequently supposed to play the role of effective stress in multiphase systems, the Love-Weber stress is found to be valid only for regular packings to describe the deformation behavior in the elastic regime. In random packings, it does not compare consistently with the changes of elastic free energy.At the peak for shear strength, Love-Weber stress can be defined as a possible micromechanical effective stress formula for some configurations. It verifies a unique Mohr-Coulomb rupture envelop when the envelops are plotted in $p_{cont},q_{cont}$ in the case of random packings with rough /smooth grains and tightly graded particle size distributions. It is however shown that this property does not hold for all the possible particle size distributions.The pendular bridge model is coupled with the funicular model of Yuan et. al. (2015) allows the simulation of a full drainage process where it is shown that the addition of the menisci have a noticeable impact on the behavior of unsaturated soils.The second application embodies particle-elastic continuum interaction to study the compaction of proppant region that is of big importance in the oil and gas production industry. A granular pile is compacted between two rigid plates. The stress distribution induced by the pile of proppants on the plates is investigated and related to the opening of the fracture and the contact zone on each plate. The influence of friction angle between the grains and the grains and the plates are also investigated. The rigid plates are replaced in a second part by an elastic rock block simulated using DEM, gluing particles together with elastic contacts. DEM is shown to be adequate to simulate an elastic continuum medium as the comparison of the analysis of a rigid disc inclusion problem in the discrete rock block with analytical results of Selvadurai (1994) fit very well. The shape of the proppant pile deposited from the borehole by gravity and the geometry of the fracture for different overburden stress values are presented.
78

Índices de dano aplicáveis a materiais quasi-frágeis avaliados utilizando o método dos elementos discretos formado por barras

Rodrigues, Rodolfo da Silva January 2015 (has links)
O processo de dano em materiais quasi-frágeis pode ser caracterizado pela perda de isotropia para certos níveis de carga. A localização de deformações, o efeito cooperativo entre regiões danificadas e a avalanche de rupturas são características particulares na medição do dano neste tipo de material. As características mencionadas criam diferentes formas de dissipação de energia, que não são fáceis de representar utilizando métodos baseados na hipótese dos meios contínuos. No presente trabalho uma versão do Método dos Elementos Discretos Formado por Barras é empregado. Neste método a massa do contínuo é concentrada nos nós, os quais são interconectados por barras sem massa. Essas barras possuem uma lei constitutiva bilinear, que é usada para simular a ruptura da estrutura em estudo. A distribuição dos nós permite formar uma treliça tridimensional regular, e a partir dessa discretização espacial é possível chegar a um sistema de equações de movimento, que é resolvido com um esquema explícito de integração numérica (diferenças finitas centrais). Neste método a fratura e a fragmentação são levadas em conta de forma natural, já que as barras que rompem durante o processo são desativadas, respeitando o balanço energético. É possível introduzir heterogeneidade no modelo considerando as propriedades do material como campos espaciais aleatórios com distribuição de probabilidades de Weibull e comprimento de correlação conhecido. Nessa dissertação, é analisado o processo de dano que aparece em estruturas de geometria simples quando solicitadas até o colapso. Diferentes índices são apresentados para realizar a medição do dano. O desempenho desses índices, e a maneira com que eles ajudam na interpretação da evolução do dano, são discutidos nesse trabalho. / The process of damage in quasi-fragile materials is characterized by loss of isotropy for certain load levels. The strain localization, the cooperative effect between damaged regions and the avalanche of ruptures are particular features in measuring the damage in this kind of material. The mentioned features create different forms of energy dissipation, which are not easy to represent with a continuous approach. In the present work a version of the Lattice Discrete Element Method is employed. In this method the mass of the solid is concentrated on node points, which are interconnected by uniaxial elements. These elements have a bilinear constitutive law, which is used to simulate the rupture of the structure under study. The node distribution allows the formation of a regular three-dimensional lattice, and from this spatial discretization it is possible to arrive at a system of equations of motion, which is solved by an explicit numerical integration scheme (central difference). In this method the fracture and fragmentation are taken into account in a natural manner, since the bars that reached their limit strength during the process are disabled of the system, respecting the energy balance. It is possible to introduce heterogeneity in the model considering the material properties as random fields with spatial Weibull probability distribution and known correlation length. In this dissertation, the damage process, which appears in structures of simple geometry, when they are loaded until collapse, is analysed. Different indexes are presented to perform the measurement of the damage. The performance of those indexes, and the way they help in the interpretation of the damage evolution, are discussed in this paper.
79

Estabilidade estrutural aplicada no contexto LDEM

Gasparotto, Bruno Grebin January 2017 (has links)
A demanda por estruturas mais leves implica num ganho em economia, porém o aumento de esbeltez da estrutura pode tornar ela susceptível a instabilidade frente a tensões compressivas estáticas ou dinâmicas. A instabilidade acontece em várias escalas da estrutura analisada e pode interagir com outras formas de colapso como a propagação instável de fissuras, problema governado pela mecânica da fratura, pela plastificacão do material, ou por uma combinação dos efeitos citados. Neste contexto, no presente trabalho, se explora a capacidade do método dos elementos discretizados por barras (LDEM) na simulação de problemas de instabilidade estática e dinâmica devido as tensões de compressão. Este método permite simular o sólido como um arranjo de barras com rigidez equivalente ao contínuo que se quer representar. Leis constitutivas não lineares permitem modelar ruptura de forma simples. A equação de movimento resultante da discretização permite formular uma equação de movimento desacoplada que pode ser integrada no domínio do tempo com um método explícito (Método das Diferencias Finitas Centrais). O fato das barras serem rotuladas nos seus extremos e a solução do problema ser obtida de forma incremental permite capturar problemas com não linearidade geométrica, entre eles a instabilidade estrutural frente a tensões compressivas. Como último exemplo se realiza a análise de um painel sanduiche por flexão em três pontos, que é composto por um núcleo de poliuretano, com duas lâminas externas de material compósito, neste caso a instabilidade estrutural está associada a flambagem da camada da lâmina comprimida. Finalmente a potencialidade da metodologia de análise utilizada é discutida. / The demand for lighter structures implies a gain in economy, but the increase in slenderness of the structure may make it susceptible to instability against static or dynamic compressive stresses. Instability occurs at various scales of the analyzed structure and may interact with other forms of collapse such as unstable crack propagation, problem governed by fracture mechanics, plastification of the material, or a combination of the cited effects. In this context, in the present work, we explore the ability of the discrete elements methods by bars (LDEM) in the simulation of problems of static and dynamic instability due to the compression stresses. This method allows to simulate the solid as an arrangement of bars with rigidity equivalent to the continuum that one wants to represent. Constitutive non-linear laws allow simple modeling of rupture. The equation of motion resulting from the discretization allows us to formulate a decoupled motion equation that can be integrated in the time domain with an explicit method (Central Finite Differences Method). The fact that the bars are labeled at their ends and the solution of the problem is obtained in an incremental way allows to capture problems with geometric non-linearity, among them the structural instability against compressive tensions. The last example, the analysis of a sandwich panel by three-point bending, which is composed of a polyurethane core, with two external blades of composite material, in this case the structural instability is associated with buckling of the layer of the compressed blade . Finally, the potential of the analysis methodology is discussed.
80

Modeling, Characterizing and Reconstructing Mesoscale Microstructural Evolution in Particulate Processing and Solid-State Sintering

January 2018 (has links)
abstract: In material science, microstructure plays a key role in determining properties, which further determine utility of the material. However, effectively measuring microstructure evolution in real time remains an challenge. To date, a wide range of advanced experimental techniques have been developed and applied to characterize material microstructure and structural evolution on different length and time scales. Most of these methods can only resolve 2D structural features within a narrow range of length scale and for a single or a series of snapshots. The currently available 3D microstructure characterization techniques are usually destructive and require slicing and polishing the samples each time a picture is taken. Simulation methods, on the other hand, are cheap, sample-free and versatile without the special necessity of taking care of the physical limitations, such as extreme temperature or pressure, which are prominent issues for experimental methods. Yet the majority of simulation methods are limited to specific circumstances, for example, first principle computation can only handle several thousands of atoms, molecular dynamics can only efficiently simulate a few seconds of evolution of a system with several millions particles, and finite element method can only be used in continuous medium, etc. Such limitations make these individual methods far from satisfaction to simulate macroscopic processes that a material sample undergoes up to experimental level accuracy. Therefore, it is highly desirable to develop a framework that integrate different simulation schemes from various scales to model complicated microstructure evolution and corresponding properties. Guided by such an objective, we have made our efforts towards incorporating a collection of simulation methods, including finite element method (FEM), cellular automata (CA), kinetic Monte Carlo (kMC), stochastic reconstruction method, Discrete Element Method (DEM), etc, to generate an integrated computational material engineering platform (ICMEP), which could enable us to effectively model microstructure evolution and use the simulated microstructure to do subsequent performance analysis. In this thesis, we will introduce some cases of building coupled modeling schemes and present the preliminary results in solid-state sintering. For example, we use coupled DEM and kinetic Monte Carlo method to simulate solid state sintering, and use coupled FEM and cellular automata method to model microstrucutre evolution during selective laser sintering of titanium alloy. Current results indicate that joining models from different length and time scales is fruitful in terms of understanding and describing microstructure evolution of a macroscopic physical process from various perspectives. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2018

Page generated in 0.0554 seconds