1 |
A study of biases, assumptions and practical considerations for the use of discrete fracture networks in geomechanical practicePalleske, CORTNEY 02 June 2014 (has links)
The use of Discrete Fracture Networks (DFNs) is becoming increasingly common in geomechanical practice in addition to their continuing role in hydrogeology. These models can serve as useful tools for estimating interconnectedness of fractures, leading to estimates of probable block sizes and shapes for a set of input parameters. However, the development of these models is reliant on assumptions made about collected field data and while constructing the model themselves. The implications of these biases and assumptions are not well documented.
This work investigates the variables involved in building a Discrete Fracture Network model in order to provide insight into the decisions and assumptions made during the modeling process. Select assumptions required within the FracMan DFN software pertaining to model selection and construction are evaluated; biases and assumptions relating to field data and how it is collected that may impact the development of DFN input parameters are investigated and limits of the effects of these models on block sizes are determined. The parameters determined to be critical in determining the overall geometry of the fracture network are ranked according to their relative importance in DFN modelling and according to the relative accuracy of each parameter. / Thesis (Master, Geological Sciences & Geological Engineering) -- Queen's University, 2014-05-30 18:00:51.384
|
2 |
Groundwater Inflow into Fractured Rock Tunnels / Grundvatteninträngning i sprickor i bergtunnlarBeydoun, Mariam January 2022 (has links)
Groundwater inflow is a challenge in construction of tunnels in fractured bedrocks since it affects the safety function of tunnels and leads to potential problems in the surrounding environment, such as subsidence, dropdown of the groundwater table. Quantification of groundwater inflow into the tunnel is also important for design of grouting in the construction of the tunnel. Modelling groundwater flow in fractured bedrocks currently remains a challenge. Commonly used groundwater models are based on continuum assumptions and they do not consider realistic structures of discrete fractures, which leads to high potential uncertainty in prediction of tunnel groundwater inflow. This thesis focuses on prediction of tunnel groundwater inflow, using a discreet fracture-matrix (DFM) model. The DFM model is evaluated and compared with the conventional continuum model based on Darcy’s law. This DFM model considers, in particular, multi-scale heterogeneity, e.g. fracture networks and variable fracture aperture structures. Applying this DFM model, the impact of variable fracture aperture structures on tunnel inflow is investigated through stochastic analysis. The results show that under the same boundary conditions, the traditional continuum model overestimates the inflow compared to the DFM model. The difference in equivalent permeability is 2 to 3 orders of magnitude. The sensitivity analysis shows that the discreet fracture model is sensitive to the variability of fracture aperture. The estimated equivalent permeability values by discreet fracture modelling is in the order of 5×10-6 to 1×10-7 m/s for a fracture density of 1.2 fractures per square meter. This study demonstrates that the DFM represents the more realistic features of fractured rock structures, which is useful and can be used to predict groundwater inflow in fractured rock tunnels. / Grundvatteninflöde är en utmaning vid byggnation av tunnlar i sprucken berggrund eftersom det påverkar tunnlarnas säkerhetsfunktion och leder till potentiella problem i den omgivande miljön, såsom sättningar och Grundvattennivåsänkning. Kvantifiering av grundvatteninflöde till tunneln är också viktig för utformning av injektering i tätning? byggandet av tunneln. Att modellera grundvattenflödet i sprucken berggrund är för närvarande en utmaning. Grundvattenmodeller man normalt använder är baserade på kontinuumantaganden, och de tar inte hänsyn till realistiska strukturer av diskreta sprickor, vilket leder till hög potentiell osäkerhet i uppskattning av tunnelgrundvatteninflöde. Denna avhandling fokuserar på förutsägelse av tunnelinläckage, med hjälp av en diskret sprickmatris (DFM) modell. DFM-modellen utvärderas och jämförs med den konventionella kontinuummodell vilken är baserad på Darcys lag. Denna DFM-modell tar särskilt hänsyn till multi-skala heterogenitet, till exempel spricknätverk och variabla dubbelkolla. Genom att tillämpa denna DFM-modell undersöks effekten av strukturer med variabel spricköppning på grundvatteninflödet genom stokastisk analys. Resultaten visar att under samma randvillkor överskattar den traditionella kontinuummodellen inflödet jämfört med DFM-modellen. Skillnaden i ekvivalent permeabilitet är 2 till 3 storleksordningar. Känslighetsanalysen visar att den diskreta sprickmodellen är känslig möt variationen i spricköppningen. De uppskattade ekvivalenta permeabilitetsvärdena med diskret sprickmodellering är i storleksordningen 5x10-6 till 1x10-7 m/s för en spricktäthet på 1,2 sprickor per kvadratmeter. Denna studie visar att DFM representerar de mer realistiska egenskaperna hos sprickiga bergstrukturer, vilket är användbart och kan användas för att uppskatta grundvatteninflöde i sprickiga bergtunnlar.
|
3 |
Site Application of a Channel Network Model for Groundwater Flow and Transport in Crystalline Rock / Applicering av en flödesvägsmodell på ett specifikt fältområde för grundvattenflöde och transporPedersen, Jonas January 2018 (has links)
Groundwater flow and transport in deep crystalline rock is an important area of research. This is partly due to its relevance for constructing a long term repository for storing radioactive spent nuclear fuel in deep bedrock. Understanding the behavior of flow and transport processes in deep crystalline rock is crucial in developing a sustainable solution to this problem. This study aims to increase the understanding of how channel network models (CNM) can be applied to represent groundwater flow and solute transport in sparsely fractured crystalline rock under site specific conditions. A main objective was to determine how to incorporate structural and hydrogeological site characterization data in the construction of the CNMs. In addition to this, the associated key parameters of the CNMs were investigated to gain further understanding of model site application. To that end, a scripting approach with the python scripting library Pychan3d was used to create alternative channel network representations of a field site. A conceptual discrete fracture network (DFN) model was constructed using field site data obtained from a structural model of the fractures present at the site of the Tracer Retention Understanding Experiments (TRUE) - Block Scale at the Äspö Hard Rock Laboratory (HRL). This conceptual model was used as a base for constructing two different alternatives, denoted respectively as sparse and dense, of a CNM. The sparse CNM consisted of a limited amount of channels for each fracture, while the dense CNM acted as a DFN proxy, taking the full extent of the fracture areas into account and creating a dense, large network of flow channels for each fracture. In order to verify the performance of the generated CNMs, a reproduction of tracer tests performed at the same specific field site was attempted using a particle tracking technique. In addition to this, long term predictions of solute transport without the interference of the pumps used during the tracer tests were done in order to estimate transport time distributions. Pychan3d and the scripting approach was successfully used to create CNMs respecting specific conditions from the TRUE-Block Scale site. The sparse CNM was found to give very adequate flow and transport responses in most cases and to be relatively easier to calibrate than its dense counterpart. The long term transport predictions at the site according to the models seem to follow a channelized pattern, with only a few select paths for transport. The difficulties encountered in matching the dense CNM with the tracer tests most likely stem from difficulties in flow calibration, as well as certain key parameters being assigned too generically.
|
4 |
Image based characterisation of structural heterogeneity within clastic reservoir analoguesSeers, Thomas Daniel January 2015 (has links)
The presence of subseismic scale faulting within high porosity sandstone reservoirs and aquifers represents a significant source of uncertainty for activities such as hydrocarbon production and the geologic sequestration of carbon dioxide. The inability to resolve geometrical properties of these smaller scale faults, such as size, connectivity and intensity, using conventional subsurface datasets (i.e. seismic reflection tomography, wireline log and core), leads to ambiguous representations within reservoir models and simulators. In addition, more fundamental questions still remain over the role of cataclastic faults in the trapping and transfer of mobile geofluids within the subsurface, particularly when two or more immiscible fluid phases are present, as is the case during hydrocarbon accumulation, waterflood operations and CO2 injection. By harnessing recent developments in 3D digital surface and volume imaging, this study addresses uncertainties pertaining to the geometrical and petrophysical properties of subseismic scale faults within porous sandstone reservoirs. A novel structural feature extraction and modelling framework is developed, which facilitates the restoration of fault and fracture architecture from digital rock surface models. This framework has been used to derive volumetric fault abundance and connectivity from a normal sense array of cataclastic shear bands developed within high porosity sandstones of the Vale of Eden Basin, UK. These spatially resolved measures of discontinuity abundance provide the basis for the geostatistical extrapolation of fracture/fault intensity into reservoir modelling grids, which promises the introduction of a much higher degree of geological realism into discrete fracture network models than can currently be achieved through purely stochastic methods. Moreover, by establishing spatial correspondences between volumetric faulting intensity and larger scale features of deformation observed at the study area (cataclastic shear zones), the work demonstrates the potential to relate reservoir equivalent measures of fault or fracture abundance obtained from outcrop to seismically resolvable structures within the subsurface, aiding the prediction of reservoir structure from oilfield datasets. In addition to the derivation of continuum scale properties of sub-seismic scale fault networks, a further investigation into the pore-scale controls which govern the transfer of fluids within cataclised sandstones has been conducted. Through X-ray tomographic imaging of experimental core flood (scCO2-brine primary drainage) through a cataclastic shear band bearing sandstone, insights into the influence that variations in fault structure exert over the intra-fault drainage pathway of an invading non-wetting fluid have been gained. Drainage across the fault occurs as a highly non-uniform and non-linear process, which calls into question the practice of using continuum methods to model cross fault flow. This work has also provided an improved understanding of the role that high capillary entry pressure cataclised regions play in modifying pore-fluid displacement processes within the surrounding matrix continuum. In particular, the high sweep efficiency and enhanced non-wetting phase pore-wall contact relating to elevated phase pressure observed during drainage points towards favourable conditions for wettability alteration within cataclised sandstones. This is likely to negatively impact upon the effectiveness of oil recovery and CO2 sequestration operations within equivalent reservoir and aquifer settings.
|
5 |
Charakterisierung des hydromechanischen Verhaltens der Gesteine des Mittleren Buntsandsteins im Hinblick auf eine geothermische Nutzung: Strukturgeologische Geländeaufnahmen, gesteinsmechanische Untersuchungen und numerische Modellierungen / Characterisation of hydro-mechanical processes in the Middle Buntsandstein formation with regard to the utilisation of geothermal energy: Field studies, geomechanical measurements and numerical modellingMüller, Christian 21 July 2009 (has links)
No description available.
|
Page generated in 0.0964 seconds