• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of frugivory in North American migratory songbirds using stable carbon and nitrogen isotope analyses

Gagnon, Chantal 02 January 2008
Several species of North American migratory songbirds reportedly experience seasonal diet shifts involving a shift from an insect diet during the breeding season to one incorporating fruits during migration and non-breeding periods but the extent to which dietary plasticity occurs in migratory songbirds is poorly quantified. Thus, I used stable carbon (ä13C) and nitrogen (ä15N) isotope analyses to evaluate the timing and extent of frugivory throughout the annual life cycle of 16 species of migratory songbirds, representing wide ranges in body size and reported diets. Birds were sampled during spring and fall migration at the Delta Marsh Bird Observatory in 2003. To investigate dietary patterns, I sampled multiple tissues (muscle, liver, whole blood, claws, bone collagen, feathers) as these represent different periods of diet integration due to varying elemental turnover rates.<p>Assuming that relatively low ä15N values represent a fruit diet and relatively high ä15N values represent an insect diet, I expected tissues representing fall migration (liver, blood, and muscle from fall-captured birds) and winter (greater coverts and claws from spring-captured birds) to have lower ä15N values than tissues representing spring migration (liver, blood, and muscle from spring-captured birds) and summer (tail feathers and claws from fall-captured birds) when fruits are presumed to be less common in songbird diets. Based on blood and claw ä15N values, there was no isotopic segregation of species I classified a priori as insectivores or omnivores. For most species, tissue ä15N values showed either no seasonal change or a shift opposite to my prediction (e.g., ä15N values higher in fall birds compared to spring birds). Boreal fruit ä15N values were lower than those for insects; however, ä15N values of agricultural fruits overlapped both boreal fruit and insect values suggesting that food web baselines did not conform to a simple (single) linear trophic-enrichment model. In Yellow-rumped Warblers (Dendroica coronata), within-tissue seasonal comparisons for liver, muscle and blood indicated a fruit diet during fall and winter and an insect diet during spring and summer; claws and feathers of birds captured in spring (representing winter diet) had unexpectedly high ä15N values. Diet-tissue isotopic discrimination factors associated with both a fruit diet and insect diet were taken from the literature and used to correct stable isotope values of tissues to putative diet because, currently, little is known about the nature of factors influencing discrimination factors to be used in simple linear dietary mixing models. There were differences in tissue ä13C and ä15N values depending on which discrimination factor was used. Based on mixing model results for tissue ä15N values, a higher proportion of insects vs. fruits was detected in the diet of Yellow-rumped Warblers for all tissues except muscle and claws. <p>My interpretations are contingent on the fact that the available natural history information, on which guild classifications were based, was correct and that elemental turnover rates and discrimination factors used were accurate. However, much uncertainty remains about the appropriate diet-tissue isotopic discrimination factors corresponding to fruit and insect diets. Due to extensive natural variability of stable nitrogen isotope values in food sources, possible anthropogenic influences and a lack of knowledge of the metabolic processes that can potentially affect stable isotope values, I caution against using stable isotope analysis alone to track frugivory in temperate North American migratory songbirds. Future research should focus on captive studies aimed at determining and validating discrimination factors of various tissues, particularly claws and feathers, for birds feeding on varying proportions of fruits and insects. Additionally, more information on the dietary habits of these migratory songbirds is needed, as previous estimates of insectivory and frugivory in songbirds may not be accurate.
2

Investigation of frugivory in North American migratory songbirds using stable carbon and nitrogen isotope analyses

Gagnon, Chantal 02 January 2008 (has links)
Several species of North American migratory songbirds reportedly experience seasonal diet shifts involving a shift from an insect diet during the breeding season to one incorporating fruits during migration and non-breeding periods but the extent to which dietary plasticity occurs in migratory songbirds is poorly quantified. Thus, I used stable carbon (ä13C) and nitrogen (ä15N) isotope analyses to evaluate the timing and extent of frugivory throughout the annual life cycle of 16 species of migratory songbirds, representing wide ranges in body size and reported diets. Birds were sampled during spring and fall migration at the Delta Marsh Bird Observatory in 2003. To investigate dietary patterns, I sampled multiple tissues (muscle, liver, whole blood, claws, bone collagen, feathers) as these represent different periods of diet integration due to varying elemental turnover rates.<p>Assuming that relatively low ä15N values represent a fruit diet and relatively high ä15N values represent an insect diet, I expected tissues representing fall migration (liver, blood, and muscle from fall-captured birds) and winter (greater coverts and claws from spring-captured birds) to have lower ä15N values than tissues representing spring migration (liver, blood, and muscle from spring-captured birds) and summer (tail feathers and claws from fall-captured birds) when fruits are presumed to be less common in songbird diets. Based on blood and claw ä15N values, there was no isotopic segregation of species I classified a priori as insectivores or omnivores. For most species, tissue ä15N values showed either no seasonal change or a shift opposite to my prediction (e.g., ä15N values higher in fall birds compared to spring birds). Boreal fruit ä15N values were lower than those for insects; however, ä15N values of agricultural fruits overlapped both boreal fruit and insect values suggesting that food web baselines did not conform to a simple (single) linear trophic-enrichment model. In Yellow-rumped Warblers (Dendroica coronata), within-tissue seasonal comparisons for liver, muscle and blood indicated a fruit diet during fall and winter and an insect diet during spring and summer; claws and feathers of birds captured in spring (representing winter diet) had unexpectedly high ä15N values. Diet-tissue isotopic discrimination factors associated with both a fruit diet and insect diet were taken from the literature and used to correct stable isotope values of tissues to putative diet because, currently, little is known about the nature of factors influencing discrimination factors to be used in simple linear dietary mixing models. There were differences in tissue ä13C and ä15N values depending on which discrimination factor was used. Based on mixing model results for tissue ä15N values, a higher proportion of insects vs. fruits was detected in the diet of Yellow-rumped Warblers for all tissues except muscle and claws. <p>My interpretations are contingent on the fact that the available natural history information, on which guild classifications were based, was correct and that elemental turnover rates and discrimination factors used were accurate. However, much uncertainty remains about the appropriate diet-tissue isotopic discrimination factors corresponding to fruit and insect diets. Due to extensive natural variability of stable nitrogen isotope values in food sources, possible anthropogenic influences and a lack of knowledge of the metabolic processes that can potentially affect stable isotope values, I caution against using stable isotope analysis alone to track frugivory in temperate North American migratory songbirds. Future research should focus on captive studies aimed at determining and validating discrimination factors of various tissues, particularly claws and feathers, for birds feeding on varying proportions of fruits and insects. Additionally, more information on the dietary habits of these migratory songbirds is needed, as previous estimates of insectivory and frugivory in songbirds may not be accurate.
3

The ecology of Arctic cod (Boreogadus saida) and interactions with seabirds, seals, and whales in the Canadian Arctic

Matley, Jordan January 2012 (has links)
This thesis investigates the foraging of Arctic cod (Boreogadus saida) and its predators during the summer in the Canadian Arctic. Findings included the identification of Arctic cod, ringed seal (Pusa hispida), beluga (Delphinapterus leucas), and narwhal (Monodon monoceros) diet shifts in response to seasonal prey availability; calculation of isotopic diet-tissue discrimination factors for Arctic cod, ringed seals, and whales based on local tissue and stomach content sampling; and determination of predatory cues to optimize foraging, such as the presence of schools. Additionally, I quantified seabird feeding and interspecific interactions such kleptoparasitism and found that black-legged kittiwakes (Rissa tridactyla) and northern fulmars (Fulmarus glacialis) captured cod directly but lost many to parasitic jaegers (Stercorarius parasiticus) and glaucous gulls (Larus hyperboreus). Finally, I determined that schools of cod were important prey sources for northern fulmars, glaucous gulls, and whales however non-schooling cod were a significant source for black-legged kittiwakes and ringed seals.
4

The ecology of Arctic cod (Boreogadus saida) and interactions with seabirds, seals, and whales in the Canadian Arctic

Matley, Jordan January 2012 (has links)
This thesis investigates the foraging of Arctic cod (Boreogadus saida) and its predators during the summer in the Canadian Arctic. Findings included the identification of Arctic cod, ringed seal (Pusa hispida), beluga (Delphinapterus leucas), and narwhal (Monodon monoceros) diet shifts in response to seasonal prey availability; calculation of isotopic diet-tissue discrimination factors for Arctic cod, ringed seals, and whales based on local tissue and stomach content sampling; and determination of predatory cues to optimize foraging, such as the presence of schools. Additionally, I quantified seabird feeding and interspecific interactions such kleptoparasitism and found that black-legged kittiwakes (Rissa tridactyla) and northern fulmars (Fulmarus glacialis) captured cod directly but lost many to parasitic jaegers (Stercorarius parasiticus) and glaucous gulls (Larus hyperboreus). Finally, I determined that schools of cod were important prey sources for northern fulmars, glaucous gulls, and whales however non-schooling cod were a significant source for black-legged kittiwakes and ringed seals.

Page generated in 0.1492 seconds