• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Visual Tracking Using Stereo Images

Dehlin, Carl January 2019 (has links)
Visual tracking concerns the problem of following an arbitrary object in a video sequence. In this thesis, we examine how to use stereo images to extend existing visual tracking algorithms, which methods exists to obtain information from stereo images, and how the results change as the parameters to each tracker vary. For this purpose, four abstract approaches are identified, with five distinct implementations. Each tracker implementation is an extension of a baseline algorithm, MOSSE. The free parameters of each model are optimized with respect to two different evaluation strategies called nor- and wir-tests, and four different objective functions, which are then fixed when comparing the models against each other. The results are created on single target tracks extracted from the KITTI tracking dataset, and the optimization results show that none of the objective functions are sensitive to the exposed parameters under the joint selection of model and dataset. The evaluation results also shows that none of the extensions improve the results of the baseline tracker.
2

Visual Tracking with Deformable Continuous Convolution Operators

Johnander, Joakim January 2017 (has links)
Visual Object Tracking is the computer vision problem of estimating a target trajectory in a video given only its initial state. A visual tracker often acts as a component in the intelligent vision systems seen in for instance surveillance, autonomous vehicles or robots, and unmanned aerial vehicles. Applications may require robust tracking performance on difficult sequences depicting targets undergoing large changes in appearance, while enforcing a real-time constraint. Discriminative correlation filters have shown promising tracking performance in recent years, and consistently improved state-of-the-art. With the advent of deep learning, new robust deep features have improved tracking performance considerably. However, methods based on discriminative correlation filters learn a rigid template describing the target appearance. This implies an assumption of target rigidity which is not fulfilled in practice. This thesis introduces an approach which integrates deformability into a stateof-the-art tracker. The approach is thoroughly tested on three challenging visual tracking benchmarks, achieving state-of-the-art performance.
3

Multi-Modal Visual Tracking Using Infrared Imagery

Wettermark, Emma, Berglund, Linda January 2021 (has links)
Generic visual object tracking is the task of tracking one or several objects in all frames in a video, knowing only the location and size of the target in the initial frame. Visual tracking can be carried out in both the infrared and the visual spectrum simultaneously, this is known as multi-modal tracking. Utilizing both spectra can result in a more diverse tracker since visual tracking in infrared imagery makes it possible to detect objects even in poor visibility or in complete darkness. However, infrared imagery lacks the number of details that are present in visual images. A common method for visual tracking is to use discriminative correlation filters (DCF). These correlation filters are then used to detect an object in every frame of an image sequence. This thesis focuses on investigating aspects of a DCF based tracker, operating in the two different modalities, infrared and visual imagery. First, it was investigated whether the tracking benefits from using two channels instead of one and what happens to the tracking result if one of those channels is degraded by an external cause. It was also investigated if the addition of image features can further improve the tracking. The result shows that the tracking improves when using two channels instead of only using a single channel. It also shows that utilizing two channels is a good way to create a robust tracker, which is still able to perform even though one of the channels is degraded. Using deep features, extracted from a pre-trained convolutional neural network, was the image feature improving the tracking the most, although the implementation of the deep features made the tracking significantly slower.
4

Tracking Under Countermeasures Using Infrared Imagery

Modorato, Sara January 2022 (has links)
Object tracking can be done in numerous ways, where the goal is to track a target through all frames in a sequence. The ground truth bounding box is used to initialize the object tracking algorithm. Object tracking can be carried out on infrared imagery suitable for military applications to execute tracking even without illumination. Objects, such as aircraft, can deploy countermeasures to impede tracking. The countermeasures most often mainly impact one wavelength band. Therefore, using two different wavelength bands for object tracking can counteract the impact of the countermeasures. The dataset was created from simulations. The countermeasures applied to the dataset are flares and Directional Infrared Countermeasures (DIRCMs). Different object tracking algorithms exist, and many are based on discriminative correlation filters (DCF). The thesis investigated the DCF-based trackers STRCF and ECO on the created dataset. The STRCF and the ECO trackers were analyzed using one and two wavelength bands. The following features were investigated for both trackers: grayscale, Histogram of Oriented Gradients (HOG), and pre-trained deep features. The results indicated that the STRCF and the ECO trackers using two wavelength bands instead of one improved performance on sequences with countermeasures. The use of HOG, deep features, or a combination of both improved the performance of the STRCF tracker using two wavelength bands. Likewise, the performance of the ECO tracker using two wavelength bands was improved by the use of deep features. However, the negative aspect of using two wavelength bands and introducing more features is that it resulted in a lower frame rate.

Page generated in 0.1717 seconds