• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exploring Mosquito Thermal Biology and Chemical Ecology in the Context of Host-Seeking and Climate Change

Oker, Helen Maria 21 June 2023 (has links)
Mosquitoes are a significant global public health threat, claiming hundreds of thousands of lives annually due to the various pathogens they transmit, which result in diseases including dengue, malaria, and Zika. While various strategies and practices are in place to manage mosquito populations, these methods may be challenged due to a rise in insecticide resistance in some mosquito species, the increasing impacts of global climate change, and invasive species populations. This work presents four distinct projects investigating Culex spp., Ae. albopictus, and Ae. j. japonicus mosquitoes using a range of methods and techniques to bring novel insight into the biology and ecology of these mosquitoes. The first project focuses on the thermal preference and response to thermal cues of three Culex species which vary in host preference and climate of origin. The second project explores the effects of different rearing temperatures and regions of origin on the thermal performance, life-history traits, and nutrient reserves of Ae. albopictus mosquitoes. The third project shifts to the optimization of a species-specific attractive toxic sugar bait (ATSB) trap targeted toward invasive Ae. j. japonicus mosquitoes. The fourth chapter, which is field oriented, focuses on determining the role of elevation on mosquito biodiversity and pathogen prevalence. Collectively, these works explore how mosquitoes interact with their environment to support research-informed decisions in future mosquito control practices. / Master of Science in Life Sciences / Mosquitoes are the deadliest animals in the world, causing over half a million deaths every year. Mosquitoes are disease vectors, meaning they are able to transmit pathogens (such as viruses or bacteria) that cause diseases including malaria and Zika, which can lead to severe illness and death because of the lack of treatment and vaccines, or even access to these in some instances. While there are current strategies in place to reduce mosquito population numbers in areas with high levels of pathogen transmission, we are seeing increasing difficulties in managing and predicting these mosquito populations. Certain mosquito species have become resistant to chemical treatments and the growing impacts of climate change (such as more extreme weather and temperatures) are two factors that are expected to greatly influence mosquito biology and global distribution in the near future, which may expose new human populations to mosquito-borne illnesses. These issues have inspired the following projects to gain more information on how mosquitoes interact with their environment and their hosts, to highlight traits or behaviors that could inform novel mosquito management strategies in the future.

Page generated in 0.0782 seconds