• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solving Linear-Quadratic Optimal Control Problems on Parallel Computers

Benner, Peter, Quintana-Ortí, Enrique S., Quintana-Ortí, Gregorio 11 September 2006 (has links) (PDF)
We discuss a parallel library of efficient algorithms for the solution of linear-quadratic optimal control problems involving largescale systems with state-space dimension up to $O(10^4)$. We survey the numerical algorithms underlying the implementation of the chosen optimal control methods. The approaches considered here are based on invariant and deflating subspace techniques, and avoid the explicit solution of the associated algebraic Riccati equations in case of possible ill-conditioning. Still, our algorithms can also optionally compute the Riccati solution. The major computational task of finding spectral projectors onto the required invariant or deflating subspaces is implemented using iterative schemes for the sign and disk functions. Experimental results report the numerical accuracy and the parallel performance of our approach on a cluster of Intel Itanium-2 processors.
2

Solving Linear-Quadratic Optimal Control Problems on Parallel Computers

Benner, Peter, Quintana-Ortí, Enrique S., Quintana-Ortí, Gregorio 11 September 2006 (has links)
We discuss a parallel library of efficient algorithms for the solution of linear-quadratic optimal control problems involving largescale systems with state-space dimension up to $O(10^4)$. We survey the numerical algorithms underlying the implementation of the chosen optimal control methods. The approaches considered here are based on invariant and deflating subspace techniques, and avoid the explicit solution of the associated algebraic Riccati equations in case of possible ill-conditioning. Still, our algorithms can also optionally compute the Riccati solution. The major computational task of finding spectral projectors onto the required invariant or deflating subspaces is implemented using iterative schemes for the sign and disk functions. Experimental results report the numerical accuracy and the parallel performance of our approach on a cluster of Intel Itanium-2 processors.

Page generated in 0.0957 seconds