1 |
Contribution à l'étude de la dispersion hydrodynamique et de son couplage à la convection naturelle en milieux poreux modèles fracturés.Istasse, Eric E. 04 May 2004 (has links)
Le présent manuscrit contribue à l’étude des écoulements liquides dans des milieux poreux artificiels, plus spécifiquement dans les cas où la matrice poreuse présente des gradients de perméabilité importants, par exemple dans un milieu stratifié ou fracturé. Nous étudions l’influence de tels milieux poreux hétérogènes sur différents types d’écoulements. Ce travail est principalement expérimental, mettant en oeuvre une technique optique non-intrusive appelée effet Christiansen. Cette méthode permet de déterminer quantitativement des distributions soit de température, soit de concentration au sein d’un milieu poreux.
Trois problèmes physiques sont étudiés: tout d’abord le problème de Horton-Rodgers-Lapwood qui est l’équivalent du très connu problème de Rayleigh-Bénard mais pour un milieu poreux, ensuite les phénomènes de dispersion hydrodynamique que l’on rencontre dans des écoulements multiphasiques. Cette dispersion hydrodynamique est essentiellement envisagée comme un processus macroscopique de diffusion, renforcé par rapport à la diffusion moléculaire que l’on rencontre en milieu fluide libre. Enfin, le troisième problème englobe les écoulements capillaires en milieux poreux en environnement de pesanteur réduite. Dans le cas d’écoulements immiscibles multiphasiques, il faut prendre en considération l’effet de la tension superficielle aux interfaces. Comme les effets capillaires sont partiellement masqués par les effets de pesanteur durant des expériences au sol, une étude précise des effets de mouillage dans ces écoulements en milieu poreux nécessite de les découpler au maximum des autres effets physiques. Un programme de recherche en microgravité a été réalisé, et un nouveau modèle mathématique qui prend en compte l’influence des forces capillaires a été élaboré dans le cadre d’une collaboration entre le Service de Chimie-Physique et le Prof. N.N. Smirnov du Département de Mécanique et de Mathématique de l’Université d’Etat de Moscou.
La structure de ce travail part du Chapitre 1, qui présente essentiellement les milieux poreux et leurs spécificités. Ce dernier introduit le formalisme et les concepts nécessaires au traitement des trois problèmes de recherche envisagés. Le Chapitre 2 présente ensuite une étude bibliographique du problème de Horton-Rodgers-Lapwood et des phénomènes de dispersion hydrodynamique en milieux poreux. Le Chapitre 3 est consacré à l’effet Christiansen. Le Chapitre 4 présente les dispositifs de laboratoire mis au point, ainsi qu’une compilation des résultats expérimentaux obtenus. Les problèmes d’écoulements capillaires sont exposés au Chapitre 5, étant donné que la technique expérimentale est différente de celle basée sur l’effet Christiansen. Ce Chapitre compare le nouveau modèle mathématique aux résultats des expériences menées en microgravité durant de nombreuses campagnes de vols paraboliques. Le Chapitre 6 referme ce travail par ses conclusions et perspectives.
|
2 |
Transport phenomena in porous media / Phénomène de transport en milieux poreuxLoix, Fabrice 19 December 2005 (has links)
Porous media are ubiquitous in our common life :
typically, the soil, our skin, our clothes, the coffee filters ... exhibit non-homogeneous properties (their porosity) which allow various fluids to flow across the solid matrix. Exploiting the porous properties of these
materials is also frequent in the industry. Indeed, they are present in many application fields such as the forming of composite materials, clean motor devices, filtration systems, oil extraction, mixing devices, biological tissue substitution, etc.
The objective of this thesis is to investigate
the transport phenomena associated with a wide
class of flows in porous media and to analyse
more deeply the associated physical effects, as
represented by the medium permeability and mechanical dispersion tensors.
The present work has been carried out following a three-step strategy. Firstly, we have investigated the theory of transport in porous
media and we have developed continuous and micro-macro physical models to represent the principal macroscopic flow effects taking into account the associated application conditions. Then we have studied the numerical solution of the resulting system while an experimental device has been set up in order to validate the entire strategy and the obtained simulation results. Finally, as applications of our developments, we have investigated some industrial flows pertaining to Liquid Moulding Technologies, and also the behaviour of cartilage as a porous medium, with a final comparison of numerical and experimental results.
|
3 |
Modèle macroscopique de la dispersion diphasique en milieux poreux et fracturés / Hydrodynamic mixing in two-phase flow through heterogeneous and fractured porous mediaSkachkov, Sergey 27 October 2006 (has links)
L’objectif est de construire le modèle homogénéisé d’un écoulement diphasique en milieu poreux et fracturé, en mettant en évidence le phénomène de mélange dynamique (mixing) entre les phases, provoqué par l’hétérogénéité du milieu. L’attention est concentrée sur l’influence de la capillarité. L’homogénéisation à double échelle a été appliquée. Le mixing se manifeste sous forme de la dispersion hydrodynamique et de l’advection renormalisée. Le tenseur de dispersion, déterminé à travers le problème cellulaire, est une fonction non linéaire de la saturation, vitesse d’écoulement, rapport de viscosité et du nombre capillaire. Pour les milieux fracturés, une méthode streamline configurations a été avancée pour le cas diphasique. Elle permet d’obtenir la dispersion et la perméabilité effective sous forme analytique pour des réseaux de fracture périodiques, ou semi-analytique pour des réseaux aléatoires. La simulation d’un déplacement diphasique à la base du nouveau modèle a été réalisée / The objective of the thesis is to develop the homogenized model of a two-phase flow through a porous and fractured medium by highlighting the dynamic mixing between the phases, caused by the medium heterogeneity. Attention is focused on the influence of the capillarity. The two-scale homogenization is applied. The mixing is manifested in form of the hydrodynamic dispersion and renormalized advection. The dispersion tensor, determined by the cell problem, is a nonlinear function of saturation, flow velocity, viscosity ratio and capillary number. For a fractured medium the method of streamline configurations was advanced for a two- phase case. This method enables to obtain the dispersion tensor and the effective permeability in analytical form for periodic fractured networks or in semi-analytical form for random networks. The simulation of two- phase displacement based on the new model is performed
|
4 |
Contribution à l'étude de la dispersion hydrodynamique et de son couplage à la convection naturelle en milieux poreux modèles fracturésIstasse, Eric 04 May 2004 (has links)
Le présent manuscrit contribue à l’étude des écoulements liquides dans des milieux poreux artificiels, plus spécifiquement dans les cas où la matrice poreuse présente des gradients de perméabilité importants, par exemple dans un milieu stratifié ou fracturé. Nous étudions l’influence de tels milieux poreux hétérogènes sur différents types d’écoulements. Ce travail est principalement expérimental, mettant en oeuvre une technique optique non-intrusive appelée effet Christiansen. Cette méthode permet de déterminer quantitativement des distributions soit de température, soit de concentration au sein d’un milieu poreux. <p><p>Trois problèmes physiques sont étudiés: tout d’abord le problème de Horton-Rodgers-Lapwood qui est l’équivalent du très connu problème de Rayleigh-Bénard mais pour un milieu poreux, ensuite les phénomènes de dispersion hydrodynamique que l’on rencontre dans des écoulements multiphasiques. Cette dispersion hydrodynamique est essentiellement envisagée comme un processus macroscopique de diffusion, renforcé par rapport à la diffusion moléculaire que l’on rencontre en milieu fluide libre. Enfin, le troisième problème englobe les écoulements capillaires en milieux poreux en environnement de pesanteur réduite. Dans le cas d’écoulements immiscibles multiphasiques, il faut prendre en considération l’effet de la tension superficielle aux interfaces. Comme les effets capillaires sont partiellement masqués par les effets de pesanteur durant des expériences au sol, une étude précise des effets de mouillage dans ces écoulements en milieu poreux nécessite de les découpler au maximum des autres effets physiques. Un programme de recherche en microgravité a été réalisé, et un nouveau modèle mathématique qui prend en compte l’influence des forces capillaires a été élaboré dans le cadre d’une collaboration entre le Service de Chimie-Physique et le Prof. N.N. Smirnov du Département de Mécanique et de Mathématique de l’Université d’Etat de Moscou.<p><p><p>La structure de ce travail part du Chapitre 1, qui présente essentiellement les milieux poreux et leurs spécificités. Ce dernier introduit le formalisme et les concepts nécessaires au traitement des trois problèmes de recherche envisagés. Le Chapitre 2 présente ensuite une étude bibliographique du problème de Horton-Rodgers-Lapwood et des phénomènes de dispersion hydrodynamique en milieux poreux. Le Chapitre 3 est consacré à l’effet Christiansen. Le Chapitre 4 présente les dispositifs de laboratoire mis au point, ainsi qu’une compilation des résultats expérimentaux obtenus. Les problèmes d’écoulements capillaires sont exposés au Chapitre 5, étant donné que la technique expérimentale est différente de celle basée sur l’effet Christiansen. Ce Chapitre compare le nouveau modèle mathématique aux résultats des expériences menées en microgravité durant de nombreuses campagnes de vols paraboliques. Le Chapitre 6 referme ce travail par ses conclusions et perspectives. / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
|
Page generated in 0.1159 seconds