1 |
Možnosti modelování heteroskedasticity s aplikacemi v neživotním pojištění / Some possibilities of heteroskedasticity modeling with applications to non-life insurancePavlačková, Petra January 2014 (has links)
Title: Some possibilities of heteroskedasticity modeling with applications to non-life insurance Author:Petra Pavlačková Department: Department of Probability and Mathematical Statistics Supervisor: Ing. Zimmermann Pavel, Ph.d. Abstract: This thesis deals with the possibilities of modeling heteroskedasticity using generalized linear models. It summarizes the assumption for these models and their application in practice. It shows the practical need for these models. Furthermore, the thesis deals with the modeling of variance using other methods than generalized lienar models - such as generalized additive models or local regression. Comparison of methods is graphically demonstrated. Keywords: Dispersion parameter, variance function, Joint modelling of mean and dispersion
|
2 |
Matriz de covariâncias do estimador de máxima verossimilhança corrigido pelo viés em modelos lineares generalizados com parâmetro de dispersão desconhecido. / Matrix of covariates of the bias-corrected maximum likelihood estimator in generalized linear models with unknown dispersion parameter.BARROS, Fabiana Uchôa. 27 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-27T16:10:22Z
No. of bitstreams: 1
FABIANA UCHÔA BARROS - DISSERTAÇÃO PPGMAT 2011..pdf: 444205 bytes, checksum: dd1ada684703bcb400e631c5f044668b (MD5) / Made available in DSpace on 2018-07-27T16:10:22Z (GMT). No. of bitstreams: 1
FABIANA UCHÔA BARROS - DISSERTAÇÃO PPGMAT 2011..pdf: 444205 bytes, checksum: dd1ada684703bcb400e631c5f044668b (MD5)
Previous issue date: 2011-12 / Capes / Com base na expressão de Pace e Salvan (1997 pág. 30), obtivemos a matriz de
covariâncias de segunda ordem dos estimadores de máxima verossimilhança corrigidos
pelo viés de ordem n−1 em modelos lineares generalizados, considerando o parâmetro
de dispersão desconhecido, porém o mesmo para todas as observações. A partir dessa
matriz, realizamos modi cações no teste de Wald. Os resultados obtidos foram avaliados
através de estudos de simulação de Monte Carlo. / Based on the expression of Pace and Salvan (1997 pág. 30), we obtained the
second order covariance matrix of the of the maximum likelihood estimators corrected
for bias of order n−1in generalized linear models, considering that the dispersion parameter is the same although unknown for all observations. From this matrix, we made
modi cations to the Wald test. The results were evaluated through simulation studies
of Monte Carlo.
|
3 |
Méthode non-paramétrique des noyaux associés mixtes et applications / Non parametric method of mixed associated kernels and applicationsLibengue Dobele-kpoka, Francial Giscard Baudin 13 June 2013 (has links)
Nous présentons dans cette thèse, l'approche non-paramétrique par noyaux associés mixtes, pour les densités àsupports partiellement continus et discrets. Nous commençons par rappeler d'abord les notions essentielles d'estimationpar noyaux continus (classiques) et noyaux associés discrets. Nous donnons la définition et les caractéristiques desestimateurs à noyaux continus (classiques) puis discrets. Nous rappelons aussi les différentes techniques de choix deparamètres de lissage et nous revisitons les problèmes de supports ainsi qu'une résolution des effets de bord dans le casdiscret. Ensuite, nous détaillons la nouvelle méthode d'estimation de densités par les noyaux associés continus, lesquelsenglobent les noyaux continus (classiques). Nous définissons les noyaux associés continus et nous proposons laméthode mode-dispersion pour leur construction puis nous illustrons ceci sur les noyaux associés non-classiques de lalittérature à savoir bêta et sa version étendue, gamma et son inverse, gaussien inverse et sa réciproque le noyau dePareto ainsi que le noyau lognormal. Nous examinons par la suite les propriétés des estimateurs qui en sont issus plusprécisément le biais, la variance et les erreurs quadratiques moyennes ponctuelles et intégrées. Puis, nous proposons unalgorithme de réduction de biais que nous illustrons sur ces mêmes noyaux associés non-classiques. Des études parsimulations sont faites sur trois types d’estimateurs à noyaux lognormaux. Par ailleurs, nous étudions lescomportements asymptotiques des estimateurs de densité à noyaux associés continus. Nous montrons d'abord lesconsistances faibles et fortes ainsi que la normalité asymptotique ponctuelle. Ensuite nous présentons les résultats desconsistances faibles et fortes globales en utilisant les normes uniformes et L1. Nous illustrons ceci sur trois typesd’estimateurs à noyaux lognormaux. Par la suite, nous étudions les propriétés minimax des estimateurs à noyauxassociés continus. Nous décrivons d'abord le modèle puis nous donnons les hypothèses techniques avec lesquelles noustravaillons. Nous présentons ensuite nos résultats minimax tout en les appliquant sur les noyaux associés non-classiquesbêta, gamma et lognormal. Enfin, nous combinons les noyaux associés continus et discrets pour définir les noyauxassociés mixtes. De là, les outils d'unification d'analyses discrètes et continues sont utilisés, pour montrer les différentespropriétés des estimateurs à noyaux associés mixtes. Une application sur un modèle de mélange des lois normales et dePoisson tronquées est aussi donnée. Tout au long de ce travail, nous choisissons le paramètre de lissage uniquementavec la méthode de validation croisée par les moindres carrés. / We present in this thesis, the non-parametric approach using mixed associated kernels for densities withsupports being partially continuous and discrete. We first start by recalling the essential concepts of classical continuousand discrete kernel density estimators. We give the definition and characteristics of these estimators. We also recall thevarious technical for the choice of smoothing parameters and we revisit the problems of supports as well as a resolutionof the edge effects in the discrete case. Then, we describe a new method of continuous associated kernels for estimatingdensity with bounded support, which includes the classical continuous kernel method. We define the continuousassociated kernels and we propose the mode-dispersion for their construction. Moreover, we illustrate this on the nonclassicalassociated kernels of literature namely, beta and its extended version, gamma and its inverse, inverse Gaussianand its reciprocal, the Pareto kernel and the kernel lognormal. We subsequently examine the properties of the estimatorswhich are derived, specifically, the bias, variance and the pointwise and integrated mean squared errors. Then, wepropose an algorithm for reducing bias that we illustrate on these non-classical associated kernels. Some simulationsstudies are performed on three types of estimators lognormal kernels. Also, we study the asymptotic behavior of thecontinuous associated kernel estimators for density. We first show the pointwise weak and strong consistencies as wellas the asymptotic normality. Then, we present the results of the global weak and strong consistencies using uniform andL1norms. We illustrate this on three types of lognormal kernels estimators. Subsequently, we study the minimaxproperties of the continuous associated kernel estimators. We first describe the model and we give the technicalassumptions with which we work. Then we present our results that we apply on some non-classical associated kernelsmore precisely beta, gamma and lognormal kernel estimators. Finally, we combine continuous and discrete associatedkernels for defining the mixed associated kernels. Using the tools of the unification of discrete and continuous analysis,we show the different properties of the mixed associated kernel estimators. All through this work, we choose thesmoothing parameter using the least squares cross-validation method.
|
Page generated in 0.0928 seconds