1 |
DISTRIBUTED HEBBIAN INFERENCE OF ENVIRONMENT STRUCTURE IN SELF-ORGANIZED SENSOR NETWORKSSHAH, PAYAL D. 03 July 2007 (has links)
No description available.
|
2 |
Robust Distributed Parameter Estimation in Wireless Sensor NetworksJanuary 2017 (has links)
abstract: Fully distributed wireless sensor networks (WSNs) without fusion center have advantages such as scalability in network size and energy efficiency in communications. Each sensor shares its data only with neighbors and then achieves global consensus quantities by in-network processing. This dissertation considers robust distributed parameter estimation methods, seeking global consensus on parameters of adaptive learning algorithms and statistical quantities.
Diffusion adaptation strategy with nonlinear transmission is proposed. The nonlinearity was motivated by the necessity for bounded transmit power, as sensors need to iteratively communicate each other energy-efficiently. Despite the nonlinearity, it is shown that the algorithm performs close to the linear case with the added advantage of power savings. This dissertation also discusses convergence properties of the algorithm in the mean and the mean-square sense.
Often, average is used to measure central tendency of sensed data over a network. When there are outliers in the data, however, average can be highly biased. Alternative choices of robust metrics against outliers are median, mode, and trimmed mean. Quantiles generalize the median, and they also can be used for trimmed mean. Consensus-based distributed quantile estimation algorithm is proposed and applied for finding trimmed-mean, median, maximum or minimum values, and identification of outliers through simulation. It is shown that the estimated quantities are asymptotically unbiased and converges toward the sample quantile in the mean-square sense. Step-size sequences with proper decay rates are also discussed for convergence analysis.
Another measure of central tendency is a mode which represents the most probable value and also be robust to outliers and other contaminations in data. The proposed distributed mode estimation algorithm achieves a global mode by recursively shifting conditional mean of the measurement data until it converges to stationary points of estimated density function. It is also possible to estimate the mode by utilizing grid vector as well as kernel density estimator. The densities are estimated at each grid point, while the points are updated until they converge to a global mode. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2017
|
3 |
Sensor Networks: Studies on the Variance of Estimation, Improving Event/Anomaly Detection, and Sensor Reduction Techniques Using Probabilistic ModelsChin, Philip Allen 19 July 2012 (has links)
Sensor network performance is governed by the physical placement of sensors and their geometric relationship to the events they measure. To illustrate this, the entirety of this thesis covers the following interconnected subjects: 1) graphical analysis of the variance of the estimation error caused by physical characteristics of an acoustic target source and its geometric location relative to sensor arrays, 2) event/anomaly detection method for time aggregated point sensor data using a parametric Poisson distribution data model, 3) a sensor reduction or placement technique using Bellman optimal estimates of target agent dynamics and probabilistic training data (Goode, Chin, & Roan, 2011), and 4) transforming event monitoring point sensor data into event detection and classification of the direction of travel using a contextual, joint probability, causal relationship, sliding window, and geospatial intelligence (GEOINT) method. / Master of Science
|
Page generated in 0.0765 seconds