• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 8
  • 4
  • Tagged with
  • 33
  • 33
  • 20
  • 10
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Points quantiques : caractérisation et applications en sciences pharmaceutiques

Moquin, Alexandre 03 1900 (has links)
L’imagerie médicale a longtemps été limitée à cause des performances médiocres des fluorophores organiques. Récemment la recherche sur les nanocristaux semi-conducteurs a grandement contribué à l’élargissement de la gamme d’applications de la luminescence dans les domaines de l’imagerie et du diagnostic. Les points quantiques (QDs) sont des nanocristaux de taille similaire aux protéines (2-10 nm) dont la longueur d’onde d’émission dépend de leur taille et de leur composition. Le fait que leur surface peut être fonctionnalisée facilement avec des biomolécules rend leur application particulièrement attrayante dans le milieu biologique. Des QDs de structure « coeur-coquille » ont été synthétisés selon nos besoins en longueur d’onde d’émission. Dans un premier article nous avons modifié la surface des QDs avec des petites molécules bi-fonctionnelles portant des groupes amines, carboxyles ou zwitterions. L’effet de la charge a été analysé sur le mode d’entrée des QDs dans deux types cellulaires. À l’aide d’inhibiteurs pharmacologiques spécifiques à certains modes d’internalisation, nous avons déterminé le mode d’internalisation prédominant. L’endocytose par les radeaux lipidiques représente le mode d’entrée le plus employé pour ces QDs de tailles similaires. D’autres modes participent également, mais à des degrés moindres. Des disparités dans les modes d’entrée ont été observées selon le ligand de surface. Nous avons ensuite analysé l’effet de l’agglomération de différents QDs sur leur internalisation dans des cellules microgliales. La caractérisation des agglomérats dans le milieu de culture cellulaire a été faite par la technique de fractionnement par couplage flux-force (AF4) associé à un détecteur de diffusion de la lumière. En fonction du ligand de surface et de la présence ou non de protéines du sérum, chacun des types de QDs se sont agglomérés de façon différente. À l'aide d’inhibiteur des modes d’internalisation, nous avons corrélé les données de tailles d’agglomérats avec leur mode d’entrée cellulaire. Les cellules microgliales sont les cellules immunitaires du système nerveux central (CNS). Elles répondent aux blessures ou à la présence d’inflammagènes en relâchant des cytokines pro-inflammatoires. Une inflammation non contrôlée du CNS peut conduire à la neurodégénérescence neuronale et est souvent observée dans les cas de maladies chroniques. Nous nous sommes intéressés au développement d’un nanosenseur pour mesurer des biomarqueurs du début de l’inflammation. Les méthodes classiques pour étudier l’inflammation consistent à mesurer le niveau de protéines ou molécules relâchées par les cellules stressées (par exemple monoxyde d’azote, IL-1β). Bien que précises, ces méthodes ne mesurent qu’indirectement l’activité de la caspase-1, responsable de la libération du l’IL-1β. De plus ces méthode ne peuvent pas être utilisées avec des cellules vivantes. Nous avons construit un nanosenseur basé sur le FRET entre un QD et un fluorophore organique reliés entre eux par un peptide qui est spécifiquement clivé par la caspase-1. Pour induire l’inflammation, nous avons utilisé des molécules de lipopolysaccharides (LPS). La molécule de LPS est amphiphile. Dans l’eau le LPS forme des nanoparticules, avec des régions hydrophobes à l’intérieure. Nous avons incorporé des QDs dans ces régions ce qui nous a permis de suivre le cheminement du LPS dans les cellules microgliales. Les LPS-QDs sont internalisés spécifiquement par les récepteurs TLR-4 à la surface des microglies. Le nanosenseur s’est montré fonctionnel dans la détermination de l’activité de la caspase-1 dans cellules microgliales activées par le LPS. Éventuellement, le senseur permettrait d’observer en temps réel l’effet de thérapies ciblant l’inflammation, sur l’activité de la caspase-1. / Medical imaging based on fluorescence has suffered from the poor photostability and mediocre performance of organic fluorophores. The discovery and subsequent improvements in nanocrystal synthesis and functionalization has greatly benefited the applications in medical imaging and the development of nanocrystal-based sensors for diagnostics. QDs are semi-conductor nanocrystals which have similar sizes as proteins (2-10 nm). They are highly luminescent, and can be made to emit at any desired wavelength by varying their size and composition. The surface of QDs can be easily functionalized with biomolecules. Hence, it is interesting to study how QDs interact in the biological world. Highly luminescent core-shell QDs emitting at different wavelengths were prepared according to our needs. In a first study, the surface of the QDs was modified with various small bi-functional thiolated ligands (carboxylated, aminated and zwitterionic). The modified-QDs of nearly identical sizes were administered in vitro to study the impact of surface charge and cell type on the mode and extent of cell uptake and elimination. Using specific inhibitors of cell uptake we determined which modes contributed to the internalization of the QDs. Endocytosis mediated by lipid rafts represented the predominant pathway for the internalization of QDs. However, other modes contributed to a lesser degree, depending on the surface ligand. We then analyzed the effect of QD agglomeration in cell culture media on its cellular uptake by microglia. Thorough characterization of QD agglomerate size distribution was conducted by asymmetrical flow field-flow fractionation (AF4) with a dynamic light scattering detector. Depending on the type of surface ligand and if serum proteins were present, the agglomeration pattern of the QDs was significantly different. With inhibitors of specific modes of cell uptake, we showed that the size distribution data, obtained by AF4, correlated with the modes of cell uptake. Microglia cells are immune cells of the central nervous system (CNS). They respond to injury or the presence of inflammagens by producing pro-inflammatory cytokine. Inflammation in the CNS may lead to loss of neurons, and can found in many chronic diseases. We were interested in building nanosensors to measure the onset of inflammation. Current methods to study inflammation consist in measuring levels of certain proteins or chemicals released by stressed cell (e.g. Western blot or ELISA assay for IL-1β). Although precise, these methods measure indirectly the activity of the enzyme responsible for releasing IL-1β, i.e. caspase-1. Moreover, these methods cannot be applied to live cells. We designed a sensor based on FRET between a QD and a dye linked by a peptide specifically cleaved by the caspase-1. To induce inflammation, we applied lipopolysaccharides (LPS), which are endotoxins present in Gram negative bacteria responsible for sceptic shock. The LPS form nanoparticles due to their amphiphilicity. The interior hydrophobic regions were used to load hydrophobic QDs, making the LPS luminescent. The microglia internalized LPS-QD predominantly through TLR-4 membrane receptors. We describe how the LPS induce inflammation and demonstrated the functionality of the QD-based sensor. Eventually, the sensor could be used to monitor in real time the action of therapeutics against inflammation.
32

Investigation of physical mechanisms during deconstruction of pretreated lignocellulosic matrix and its ability to liberate a fermentable carbon substrate in a bio-process / Compréhansion des mécanismes de destructuration de la matière cellulosique après prétraitement et de son aptitude à libérer un substrat carbone fermentescible dans un bioprocédé

Le, Tuan 10 May 2017 (has links)
La biomasse lignocellulosique comprend les sous-produits agricoles et industriels pouvant être utilisés comme matière première dans des bioprocédés variés destinés à produire des molécules d'intérêt énergétique ou chimique. Ces ressources lignocellulosiques, peuvent notamment être fournies par l'industrie papetière qui est particulièrement adaptée pour les bio-raffineries modernes car elle est en capacité de produire en grande quantité un substrat ayant une faible teneur en lignine et sans composés inhibiteurs. La bagasse de canne à sucre est également un substrat prometteur par sa composition chimique simple et son abondance dans les pays tropicaux. Lors de l'utilisation de ces substrats, l'hydrolyse enzymatique constitue une étape cruciale permettant la transformation des fibres de cellulose en une source de carbone fermentescible. Si les aspects biochimiques de cette étape d'hydrolyse font l'objet de nombreuses recherches et de développements, les réactions sous haute teneur en matière sèche font apparaître des limitations physiques qui sont beaucoup moins étudiées et analysées mais constituent des verrous scientifiques et technologiques qui freinent actuellement l'utilisation de cette ressource abondante et durable. Ce travail s'inscrit dans ce contexte et propose l'étude de cette étape d'hydrolyse enzymatique de la lignocellulose en s'intéressant conjointement aux aspects biochimiques et physiques de façon à aller vers une compréhension et une maîtrise des transferts (de masse, de chaleur) dans les réactions à forte concentration en substrat. La stratégie adoptée a consisté à réaliser et analyser des réactions d'hydrolyse sous différentes conditions opératoires en travaillant dans un premier temps sur des concentrations intermédiaires (suspension semi-diluée), c'est-à-dire en introduisant, mais de façon limitée, les complexités dues aux interactions entre particules/fibres de lignocellulose. Les résultats obtenus sont ensuite utilisés pour élaborer une stratégie adaptée aux fortes concentrations. Les aspects physiques analysés sont essentiellement le comportement rhéologique du milieu réactionnel ainsi que la morpho-granulométrie des objets en suspension. Différentes métrologies, tant in-situ que ex-situ, ont été mises en œuvre et apportent des résultats complémentaires. Les études ont été menées sur un substrat de référence, le papier Whatman, et deux substrats à vocation industrielle: la pâte à papier et la bagasse de canne à sucre. La stratégie d'étude porte sur les aspects suivants: (i) le suivi de l'évolution des comportements rhéologiques et des propriétés morphologiques des suspensions au cours de l'hydrolyse, (ii) l'étude des mécanismes d'hydrolyse lors de la dégradation des substrats, (iii) l'étude de l'impact de la composition et de la structure des substrats sur les cinétiques de solubilisation et d'hydrolyse, (iv) la quantification de la contribution des différentes activités enzymatiques, seules ou en mélange par une approche physique multi-échelle et (v) le contrôle et l'optimisation des conditions d'alimentation dans un procédé discontinu alimenté (fed-batch) afin d'atteindre des conditions de milieu concentré. Les chapitres 1 et 2 de ce document sont consacrés à une étude bibliographique du sujet et à la présentation des matériels et méthodes mis en œuvre. Le troisième chapitre présente les résultats obtenus et leur analyse. Il est constitué de trois sections: tout d'abord une étude des propriétés des différents enzymes ou cocktail d'enzymes utilisés, des substrats retenus et des suspensions avec, notamment, la détermination des régimes semi-dilués et concentrés. Ensuite sont présentées et analysées les hydrolyses effectuées en milieu semi-dilué. Les mécanismes d'hydrolyse (fragmentation, solubilisation, hydratation et séparation des agglomérats) sont étudiés pour diverses concentrations et divers enzymes/cocktails. Enfin les résultats en milieu concentré sont présentés dans une dernière section. / Lignocellulosic biomass consists of several agriculture and industrial by-products that can be used as raw material for several bioprocesses to obtain range of products. Among lignocellulosic sources, the pulp & paper industry is appropriated for modern bio-refining thank to pulp with low lignin content and free of inhibitory compounds. Besides, sugarcane bagasse is a very promising feedstock because of its simple chemical composition and its abundancy especially in tropical countries. In the bioconversion of lignocellulose, enzymatic hydrolysis is a crucial step that allows the transformation of cellulosic and hemicellulosic fibers into fermentable carbon sources. The lack of knowledge about physical limitations and hydrolysis mechanisms, especially at high dry matter content, stands as the main barrier which forbids the scale-up of bio-refinery processes. Thus, the efficient and sustainable use of lignocellulosic resources is currently a major challenge and need to be investigated. In this context, this PhD focused on the enzymatic hydrolysis of lignocellulose by both physical and biochemical approaches. The strategy consisted in carrying out and in analyzing the hydrolysis reactions under different operating conditions with semi-dilute suspensions. Then, obtained results were used to develop a hydrolysis strategy for concentrated suspensions. Different methodologies, in- and ex-situ analyses, were implemented and provided complementary results. From physical approach, analyses consisted in rheological behavior of suspensions as well as the morpho-granulometry of particles. The study was carried out on a reference substrate, Whatman paper, and on two industrial substrates, paper pulp and sugarcane bagasse. The strategy aimed to investigate different stakes: (i) evolution of rheological behaviors and the morphological properties of suspensions, (ii) hydrolysis mechanisms during the degradation of substrates, (iii) impact of substrate composition and structure on solubilization and hydrolysis kinetics, (iv) quantification of the contribution of single enzyme and enzyme mixture activities by multi-scale physical approaches and (v) control and optimization of feeding parameters for fed-batch process in order to access to concentrated suspension. Chapters 1 and 2 of this document are devoted to a research bibliographic and presentation of materials and methods. The third chapter presents obtained results and discussion in three sections. The first one is a study of the properties of different enzymes and substrates, in particular, the determination of semi-dilute and concentrated regime. Subsequently the enzymatic hydrolysis at semi-dilute regime is presented to highlight the hydrolysis mechanisms (fragmentation, solubilization, solvation and agglomerate separation) in relationship with enzyme mixtures and dosages. Finally, results in concentrated regime are discussed in the final section.
33

Modélisation et simulation numérique de la dynamique des aérosols atmosphériques

Debry, Edouard 12 1900 (has links) (PDF)
Des modèles de chimie transport permettent le suivi réaliste des polluants en phase gazeuse dans l'atmosphère. Cependant, lapollution atmosphérique se trouve aussi sous forme de fines particules en suspension, les aérosols, qui interagissent avec la phase gazeuse, le rayonnement solaire, et possèdent une dynamique propre. Cette thèse a pour objet la modélisation et la simulation numérique de l'Equation Générale de la Dynamique des aérosols (GDE). La partie I traite de quelques points théoriques de la modélisation des aérosols. La partie II est consacrée à l'élaboration du module d'aérosols résolu en taille (SIREAM). dans la partie III, on effectue la réduction du modèle en vue de son utilisation dans un modèle de dispersion tel que POLAIR3D. Plusieurs points de modélisation restent encore largement ouverts: la partie organique des aérosols, le mélange externe, le couplage à la turbulence, et les nano-particules.

Page generated in 0.1037 seconds