• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Avaliação da expressão de genes de resistência às múltiplas drogas (MDRs) e de metabolização em diferentes linhagens celulares tratadas com complexos metálicos de rutênio / Expression of multiple drug resistance gene (MDR) on different cell lines treated with ruthenium (III) complexes

Costa, Cesar Augusto Sam Tiago Vilanova 21 February 2013 (has links)
Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2014-12-11T16:01:41Z No. of bitstreams: 2 Tese -Cesar Augusto Sam Tiago Vilanova Costa - 2013.pdf: 2101811 bytes, checksum: 1cf67584701df4c2df1009b299703f7b (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2014-12-11T19:00:48Z (GMT) No. of bitstreams: 2 Tese -Cesar Augusto Sam Tiago Vilanova Costa - 2013.pdf: 2101811 bytes, checksum: 1cf67584701df4c2df1009b299703f7b (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-12-11T19:00:48Z (GMT). No. of bitstreams: 2 Tese -Cesar Augusto Sam Tiago Vilanova Costa - 2013.pdf: 2101811 bytes, checksum: 1cf67584701df4c2df1009b299703f7b (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2013-02-21 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Não consta resumo em outro idioma. / Foi com a descoberta da atividade antimitótica da cisplatina por Rosenberg na década se 1960 e 70, em seu célebre estudo com bactérias Escherichia coli, que surgiu o interesse em sintetizar e entender as bases moleculares responsáveis pelo mecanismo de ação biológica dos compostos metálicos, visto que a própria cisplatina foi inicialmente sintetizada por Peyrone nos idos de 1840. Os primeiros estudos envolvendo o uso de complexos metálicos de rutênio como agentes antitumorais foram realizados por Tochter no final dos anos 1980 (Dale et al., 1992). Àquela época, foi inferido que todos os compostos de rutênio apresentavam como mecanismo de ação, a sua ligação com o DNA, formando adutos e desencadeando processos celulares de natureza deletéria que, por fim, levariam a morte celular. É interessante lembrar que esse é o mesmo mecanismo de ação dos compostos de platina mais aceitos nos dias atuais. Sadler e Dyson (2003) estudando compostos de rutênio que continham cloro em sua estrutura, como o cloreto de cis-(dicloro)tetraaminorutênio(III) [cis-[RuCl2(NH3)4]Cl], observaram que estes compostos apresentavam mecanismos de ação biológica muito parecidos com os apresentados pela cisplatina [Pt(NH3)2Cl2], onde a hidrólise da ligação Ru–Cl pode ser fortemente influenciada pela natureza dos coligantes presentes na estrutura do rutenato, como grupamentos amino ou até mesmo pela presença de átomos de carbono. A alta concentração de cloretos no sangue permite a esses compostos metálicos, levados por proteínas séricas, chegar até as células e atravessar sua membrana celular e nuclear. Uma vez no interior do núcleo, a ligação Ru–Cl é hidrolisada, devido a queda abrupta da concentração de cloretos (que é cerca de 25 vezes menor), levando o composto a se ligar ao DNA, mais especificamente à posição N7 da base nitrogenada guanina. Por outro lado, compostos que não possuem cloro em sua estrutura, parecem apresentar mecanismos de ação diferentes ao padrão "ligação ao DNA". Sabe-se que compostos que apresentam carboxilatos em sua molécula, como a carboplatina, oxaliplatina e o próprio ditionato de cis-tetraammino(oxalato)rutênio(III) [Cis-[Ru(C2O2)(NH3)4]2(S2O6)], uma vez no interior das células, são hidrolisados muito mais lentamente do que os compostos ricos em cloretos, o que leva a um acúmulo desses compostos no citoplasma, diminuindo sua migração até o núcleo e, assim reduzindo a sua capacidade de se ligar ao DNA. Mas se o DNA não é o alvo desses compostos, então, quem poderia ser? Essa pergunta está sendo respondida com recentes estudos, que revelaram a interação desses compostos, ricos em carboxilatos, com uma miríade de proteínas e enzimas, que vão desde catepsinas, chegando até mesmo à Pgp (Melchart & Sadler, 2008). Estudos realizados por Dyson e colaboradores (2007), utilizando alguns inibidores da proteína Pgp, como fenoxazinas e antracenos, coordenados com compostos de rutênio, observaram que estes novos complexos não somente inibiram a ação da enzima, como também induziram morte celular, demonstrando uma multifuncionalidade. Seguindo essa linha de pensamento, acreditamos que a capacidade do composto ditionato de cistetraammino(oxalato)rutênio(III) em induzir apoptose nas células tumorais, assim como os baixos níveis de expressão de Pgp apresentados pelas células tratadas, corroboram os resultados previamente observados por outros grupos, utilizando compostos de rutênio similares. A resistência a fármacos mediada por Pgp é o mecanismo de MDR mais estudado atualmente. Apesar do desenvolvimento de novos agentes antitumorais, a MDR mediada pela Pgp protege as células de possíveis agentes citotóxicos, limitando a eficácia dos tratamentos quimioterápicos em pacientes com câncer. Atualmente, a extensa maioria dos inibidores da Pgp disponíveis estão associados a vários inconvenientes, que limitam o seu uso no reestabelecimento da eficácia da quimioterapia antineoplásica, após o aparecimento do fenótipo MDR. A procura de inibidores de Pgp alternativos, com um processo sintético exequível e efeitos secundários reduzidos, continua a ser um desafio para os químicos, farmacêuticos e pesquisadores. É nesse contexto que estão sendo desenvolvidos e estudados novos agentes antitumorais que possam agir como inibidores de Pgp, apresentando um efeito dual, ou até mesmo multifuncional, no tratamento clínico das neoplasias malignas. Muito tem se discutido que a próxima geração de fármacos antitumorais poderá ser formada por substâncias que se ligam a mais do que um único alvo terapêutico, o que poderia acelerar tratamento contra a doença, reduzindo o número e a concentração de fármacos que deveriam ser administrados, como os coquetéis atualmente utilizados, e até mesmo aumentando a adesão ao tratamento por parte do paciente. No presente trabalho, estudamos dois complexos de rutênio, o cloreto e o ditionato de rutênio(III), que se apresentam como promissores no possível desenvolvimento de um novo fármaco antitumoral. Essa promessa transparece no fato de ambos serem de síntese química relativamente simples (processo sintético exequível) e, principalmente, por apresentarem efeito biológico de interesse em células tumorais, como citotoxicidade e indução de morte celular, especialmente por apoptose. Pelo que foi observado nos resultados de nossa pesquisa, os complexos aqui estudados, podem constituir um modelo para o estudo de novos agentes anticancerígenos com concomitante capacidade de não induzir MDR. Esta característica se mostrou muito evidente sobre a linhagem leucêmica K-562, onde os níveis de expressão de MDR1, após o tratamento com os rutenatos, foram muito inferiores aos apresentados pelas células tumorais tratadas com o fármaco controle Cisplatina. Ainda, é importante pontuar que o composto ditionato de cistetraammino(oxalato)rutênio(III) apresentou efeito citotóxico em ambas as linhagens tumorais K-562 e A549, sem contudo induzir altos níveis de expressão de Pgp (MDR1), apresentados pelos fármacos platinados. Assim, estudos mais aprofundados sobre a estrutura e funcionamento biológico desses complexos de rutênio, representam um ponto de partida interessante para o desenvolvimento de fármacos multifuncionais e de efeito desejável, auxiliando na delineação de estudos clínicos dirigidos a grupos selecionados de pacientes que reúnam características genotípicas e fenotípicas preditivas de máxima resposta terapêutica com mínima toxicidade. Posteriormente, estes estudos podem levar às realizações de testes diagnósticos e farmacológicos mais eficazes que poderão ser estabelecidos como rotina voltada para uma melhor definição de tratamentos. Isso traria um maior sucesso no teste de novos medicamentos e reduziria os custos e riscos, minimizando o tempo gasto para aprovação de um novo medicamento e a sua disponibilização para a sociedade.
2

Avaliação do Potencial Citotóxico, Genotóxico e Antitumoral do Ditionato de cis-Tetraamino(oxalato)rutênio(III) em Diferentes Linhagens Celulares / Assessment of the Potential genotoxic and the Antitumor Ditionato Tetraamino cis-(oxalate) ruthenium (III) in Different Cell lines

PEREIRA, Flávia de Castro 22 January 2010 (has links)
Made available in DSpace on 2014-07-29T15:16:36Z (GMT). No. of bitstreams: 1 Dissertacao Flavia de Castro Pereira UFG 2010 - part 1.pdf: 495954 bytes, checksum: 284a68ffbde993ede09791444dec1865 (MD5) Previous issue date: 2010-01-22 / Despite the resounding success of cisplatin and closely related platinum antitumor agents, the movement of other transition-metal antitumor agents toward the clinic has been exceptionally slow. Non-Platinum chemotherapeutic metallopharmaceuticals hold much promise for the future, and needs to be actively explored in a large variety of tumor types in combination therapies. The preparations of metallocomplexes with potential antitumor activity has been one of the main targets of transition metal chemistry since Rosenberg s discovery of cisplatin cisdiamminedichloridoplatinum (II), cis-[Pt(NH3)2Cl2]} cytotoxic activity in the 1960s. In 1978, cisplatin was approved as the first platinumbased drug for the oncology treatment, although several negative side-effects (nephrotoxicity, neurotoxicity, nausea, etc.) had been induced on treated patients. Nevertheless, cisplatin was followed by carboplatin {cis-diammine-1,1´ - yclobutanedicarboxylateplatinum(II), [Pt(NH3)2(cbdc)], approved in 1985} and oxaliplatin 1R,2Rdiamminocyclohexaneoxalatoplatinum(II), [Pt(dach)(ox)], approved in 1996}, which met requirements of improving antitumor activity and reducing disadvantages of cisplatin, carboplatin and oxaliplatin represent the second, and third platinum-based drug generations, respectively. Nowadays, not only platinum-bearing complexes are extensively studied with the aim to broaden a spectrum of transition metal-based complexes which could be used in the treatment of cancer. Ruthenium complexes have shown potential utility in chemotherapy and photodynamic therapy. Ruthenium complexes generally have lower toxicities compared to cisplatin attributed to their specific accumulation in cancer tissues. In vitro and in vivo studies show high anticancer activity of Ruthenium complexes and some of them are currently undergoing clinical trials. In the present work we studied the antitumor activity of the Ruthenium(III) compound cis-Tetraammine(oxalato)Ruthenium(III) Dithionate {cis- [Ru(C2O4)(NH3)4]2(S2O6)} against different tumor and normal cells lineages, analising cell viabilities, cell cycle distribution, apoptosis induction mecanistics and genome DNA damage. Correlation tests were performed to determine the effects of the time of exposure and concentration of Ruthenium complex on mitotic index (MI) and mitotic aberration index on Allium cepa root cells. A comparison of MI results of cis- [Ru(C2O4)(NH3)4]2(S2O6) to those of lead nitrate reveals that the Ruthenium complex demonstrates an average mitotic inhibition eightfold higher than lead, with the frequency of cellular abnormalities almost fourfold lower and mitotic aberration threefold lower. A. cepa root cells exposed to a range of Ruthenium complex concentrations did not display significant clastogenic effects. The cis- Tetraammine(oxalato)Ruthenium(III) Dithionate therefore exhibits a remarkable capacity to inhibit mitosis, perhaps by inhibiting DNA synthesis or blocking the cell cycle in the G2 phase. Results showed that Ruthenium(III) causes a significant reduction of proliferation of A549 cells with viabilities ranging from 55.5% to 24.6% when treated with 40 μM for 24 and 48h; and 32% to 18.2% when treated with 150 μM for 24 and 48h. The Ruthenium(III) compound induced a moderate (31.9% and 39.6% for concentrations 10 and 40 μM, respectively) to high degree (74% for concentration 32 μM) of cytotoxic activity against A549 cells (IC50= 33.72 μM). On the other hand, the normal lung fibroblast MRC-5 did not show significant reduction proliferation in the presence of Ruthenium(III) compound. Even when treated with higher concentrations of cis-Tetraammine(oxalato)Ruthenium(III) Dithionate for 48 hours, MRC-5 cells showed viabilities ranging from 85% to 78,4% for 40 μM and 150 μM, respectively. The antiproliferative and cytotoxic activity revealed that K562 cells cultured with concentrations 40 and 150 μg mL-1 of Ruthenium(III) compound showed significant reduction of proliferation after 72h of exposition, with viabilities ranging from 88.2% to 55.6% when treated with 40 μM for 24 and 72h; and 76.2% to 26.7% when treated with 150 μM for 24 and 72h. The Ruthenium(III) compound induced low [22.4% (24h) to 28.2% (48h) and 29.8% (24h) to 35.7% (48h) for concentrations 10 and 40 μM, respectively] to moderate [44% (24h) and 53% (48h) for concentration 150 μM] of cytotoxic activity against K562. After incubation for 48 h, the IC50 value was 18.28 μM. Compared to the cell cycle profiles of untreated cells, flow cytometric analysis indicated a sub-G1 arresting effect of Ruthenium compound on K562 cells, inducing a 1.7-fold, 2.2-fold and 2.4-fold increase in the number of sub-G1 cells for 24, 48 and 72 h, respectively, when compared to control. The compound also caused a significant increase in tailed cells in any of the concentrations tested compared with negative control that can be associated cytotoxicity with direct effect on K562 cells DNA. / Apesar do sucesso da cisplatina e dos medicamentos à base de platina, o mercado de fármacos ainda é acessível para novas drogas á base de metal que oferecem uma melhor viabilidade, tais como a administração oral, o que pode ajudar a diminuir os efeitos colaterais graves e custos clínicos. Além disso, novos estudos concentram-se na investigação de novas drogas com maior eficácia, ou seja, drogas que interajam de forma diferente com o DNA, o que pode levar à superação da resistência inata ou adquirida de certos tipos de tumores. Dentre os vários complexos a base de metais desenvolvidos, os complexos de rutênio (III) representam uma nova família de promissores agentes anticâncer. No presente estudo foi investigado in vitro o efeito do composto Ditionato de cis- Tetraamino(oxalato)rutênio(III) sobre a viabilidade celular, distribuição das fases do ciclo celular, mecanismos de indução de apoptose e danos a molécula de DNA. Os resultados provenientes da análise do teste Allium cepa mostraram um efeito tempo dose-dependente. A avaliação mostrou que a concentração de rutênio teve um impacto maior do que o tempo de exposição. O efeito também se mostrou cumulativo, com uma quase completa inibição da mitose em uma concentração de rutênio de 0,1 mg mL-1 ou superior por períodos superiores a 24 h. Por outro lado, os resultados não revelaram efeitos clastogênicos significativos nas células meristemáticas expostas ao complexo de rutênio (III). A comparação entre os valores dos Índice Mitótico de células meristemáticas de cebolas tratadas com o complexo de rutênio em relação às células tratadas com nitrato de chumbo também mostrou que o complexo de rutênio induziu uma inibição mitótica média oito vezes maior do que o chumbo. Notadamente, as freqüências de anomalias e aberrações celulares mitóticas foram quase quatro vezes e três vezes menores, respectivamente. Os resultados mostram que o composto estudado causa significativa redução da proliferação das células A549 com viabilidades entre 55,5% para 24,6% quando tratados com 40 μM por 24 e 48h; e 32% para 18,2% quando tratados com 150 μM por 24 e 48h. O composto de rutênio(III) induz moderada (31,9% e 39,6% para concentrações 10 e 40 μM, respectivamente) para alta degradação (74% para a concentração 150 μM) para avaliação da atividade citotóxica das células A549 (IC50= 33,72 μM). Quanto à linhagem de fibroblasto de pulmão humano normal MRC-5, não mostrou redução significativa na proliferação celular na presença do composto. Quando tratadas com altas concentrações do Ditionato cis-Tetraamino(oxalato)rutênio(III) por 48 horas, celulas MRC-5 mostraram viabilidades altas de 85% e 78,4% para 40 μM e 150 μM, respectivamente. A atividade citotóxica e antiproliferativa revelou que a cultura de células K562 nas concentrações de 40 e 150 μg mL-1 do composto de Rutênio(III) mostrou redução significativa na proliferação 72h de exposição, com viabilidades de 88,2% para 55,6% quando tratadas com 40 μM por 24 e 72h; e 76,2% para 26,7% quando tratadas com 150 μM por 24 e 72h. O composto de Rutênio(III) induziu baixa [22,4% (24h) para 28,2% (48h) e 29,8% (24h) para 35,7% (48h) para concentrações de 10 e 40 μM, respectivamente] para moderada [44% (24h) e 53% (48h) para concentrações de 150 μM] atividade citotóxica em células K562. Após a incubação de 48 h, o valor da IC50 foi de 18,28 μM. Quando comparado o ciclo celular de células não tratadas, a análise indica que as células foram arrastadas para sub-G1 apresentando um aumento de 1,7 para 2,2 e 2.4% no número de células em sub-G1 por 24, 48 e 72 h, respectivamente, quando comparado com o grupo controle. O composto também causou um significativo aumento em danos celulares nas concentrações testadas quando comparado com o controle negativo, o que pode estar associado com efeitos citotóxicos diretamente no DNA celular.

Page generated in 0.0882 seconds