31 |
Even order subgroups of finite dimensional division rings /Greenfield, Gary Robert. January 1976 (has links)
Thesis (Ph. D.)--Oregon State University, 1976. / Typescript (photocopy). Includes bibliographical references. Also available on the World Wide Web.
|
32 |
Attending to our work a framework for understanding and evaluating the division of labor /Thomas, Anthony E., Bien, Joseph, January 2009 (has links)
Title from PDF of title page (University of Missouri--Columbia, viewed on Feb 16, 2010). The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Dissertation advisor: Dr. Joseph Bien. Vita. Includes bibliographical references.
|
33 |
A study of mitotic recombination in yeast by pedigree analysis.Glickman, Barry Wayne January 1969 (has links)
No description available.
|
34 |
Development of a semi-automatic method for cellular migration and division analysisChu, Calvin, School of Biomedical Engineering, UNSW January 2005 (has links)
Binary image processing algorithms have been implemented in this study to create a background subtraction mask for the segmentation of cellular time lapse images. The complexity in the development of the background subtraction mask stems from the inherent difficulties in contrast resolution at the cellular boundaries. Coupling the background subtraction mask with the path reconstruction method via superposition of overlapping binary segmented objects in sequential time lapse images produces a semi-automatic method for cellular tracking. In addition to the traditional center of mass or centroid approximation, a novel quasi-center of mass (QCM) derived from the local maxima of the distance transformation (DT) has also been proposed in this study. Furthermore, image isolation and separation between spreading/motile and mitotic cells allows the extraction of both migratory and divisional cellular information. DT application to isolated mitotic cells permits the ability to identify distinct morphologic phases of cellular division. Application of standard bivariate statistics allows the characterization of cellular migration and growth. Determination of Hotelling???s confidence ellipse from cellular trajectory data elucidates the biased or unbiased migration of cellular populations. We investigated whether it was possible to describe the trajectory as a simple binomial process, where trajectory directions are classified into a sequence of (8) discrete states. A significant proportion of trajectories did not follow the binomial model. Additionally, a preliminary relationship between the image background area, approximate number of counted cells in an image frame, and imaging time is proposed from the segmentation of confluent monolayer cellular cultures.
|
35 |
Development of a semi-automatic method for cellular migration and division analysisChu, Calvin, School of Biomedical Engineering, UNSW January 2005 (has links)
Binary image processing algorithms have been implemented in this study to create a background subtraction mask for the segmentation of cellular time lapse images. The complexity in the development of the background subtraction mask stems from the inherent difficulties in contrast resolution at the cellular boundaries. Coupling the background subtraction mask with the path reconstruction method via superposition of overlapping binary segmented objects in sequential time lapse images produces a semi-automatic method for cellular tracking. In addition to the traditional center of mass or centroid approximation, a novel quasi-center of mass (QCM) derived from the local maxima of the distance transformation (DT) has also been proposed in this study. Furthermore, image isolation and separation between spreading/motile and mitotic cells allows the extraction of both migratory and divisional cellular information. DT application to isolated mitotic cells permits the ability to identify distinct morphologic phases of cellular division. Application of standard bivariate statistics allows the characterization of cellular migration and growth. Determination of Hotelling???s confidence ellipse from cellular trajectory data elucidates the biased or unbiased migration of cellular populations. We investigated whether it was possible to describe the trajectory as a simple binomial process, where trajectory directions are classified into a sequence of (8) discrete states. A significant proportion of trajectories did not follow the binomial model. Additionally, a preliminary relationship between the image background area, approximate number of counted cells in an image frame, and imaging time is proposed from the segmentation of confluent monolayer cellular cultures.
|
36 |
Corneal cellular proliferation and wound healing /Gan, Lisha, January 1900 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst. / Härtill 5 uppsatser.
|
37 |
Differential performance of fourth-through sixth-grade students in solving open multiplication and division sentencesMcMaster, Mary Jane, January 1975 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1975. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 170-171).
|
38 |
A study of the performance of second grade children on four kinds of division problemsZweng, Marilyn, January 1963 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1963. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
|
39 |
A study of mitotic recombination in yeast by pedigree analysis.Glickman, Barry Wayne January 1969 (has links)
No description available.
|
40 |
Modified non-restoring division algorithm with improved delay profileJun, Kihwan 11 July 2011 (has links)
This thesis focuses on reducing the delay of non-restoring division. Although the digit recurrence division is lower in complexity and occupies a smaller area than division by convergence, it has a drawback: slow division speed. To mitigate this problem, two modification ideas are proposed here for the non-restoring division, the fastest division algorithm of the digit recurrence division methods.
For the first proposed approach, the delay of the multiplexer for selecting the quotient digit and determining the way to calculate the partial remainder can be reduced through inverting the order of its flowchart. Second, one adder and one inverter can be removed by using a new quotient digit converter. To prove these ideas are valid, the simulation results comparing the modified non-restoring division and the standard non-restoring division are provided. / text
|
Page generated in 0.0557 seconds