• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 5
  • Tagged with
  • 18
  • 13
  • 11
  • 11
  • 10
  • 10
  • 8
  • 8
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The DNA Translocase of Mycobacteria Is an Essential Protein Required for Growth and Division

Czuchra, Alexander 30 August 2021 (has links)
Mycobacterium tuberculosis (Mtb) is one of the most virulent and prevalent bacterial pathogens across the world. As Mtb infects millions of people a year, it remains essential to study its physiology with the goal of developing new therapeutic interventions. A critical part of the bacteria’s ability to propagate is through successful cell division. Although the process of bacterial cell division and the key proteins therein are well understood in Escherichia coli, much remains to be understood about division in mycobacteria. Genetic and cell biological approaches have recently begun to identify key divisome components in Mycobacterium smegmatis. However, questions remain regarding the role and function of one divisome protein in particular, the DNA translocase FtsK. In this dissertation, I investigated the necessity of FtsK for the growth of mycobacteria. Using an inducible knockdown of FtsK, I present evidence that complete loss of FtsK is required to inhibit growth in both Mtb and M. smegmatis, and that these orthologs share a homologous function. Additional work suggests extended loss of FtsK may be lethal to bacteria. These observations support that FtsK is an essential member of the divisome in mycobacteria, facilitating the processes of growth and division.
12

A Comprehensive Model of the Structure and Function of the FtsZ Ring of Escherichia coli

Redfearn, James C. 21 April 2016 (has links)
No description available.
13

Identificação e caracterização de novos moduladores da divisão em Bacillus subtilis / Identification and characterization of new modulators of division in B. subtilis

Tavares, José Roberto 31 July 2009 (has links)
Em procariotos, a principal forma de reprodução é a divisão binária, que permite à célula-mãe dar origem a duas outras células-filhas, com conteúdo genético idêntico ao da progenitora. Em Bacillus subtilis este processo acontece graças ao divisomo, um complexo formado por aproximadamente dezesseis proteínas, que leva à constrição da membrana e da parede, formando o septo de divisão. A montagem do divisomo é coordenada por FtsZ, um homólogo de tubulina, que polimeriza na região central da bactéria e serve de arcabouço para a montagem do divisomo. Partindo de um levantamento detalhado da distribuição dos genes envolvidos em divisão em genomas completos de procariotos detectamos que divIVA, um gene de divisão já bem caracterizado, apresentava um gene parálogo em B. subtilis, conhecido como ypsB. Para determinarmos se YpsB seria um novo componente do divisomo foi realizada uma caracterização citológica e funcional desta proteína. Utilizamos microscopia de fluorescência e fusões de YpsB a GFP para determinar a localização subcelular de YpsB. Estes experimentos revelaram que YpsB está presente no divisomo, apresentando um padrão de localização semelhante mas não idêntico ao de DivIVA. Medindo-se a taxa de co-localização entre o anel Z e YpsB ficou demonstrado que estas proteínas co-localizam em aproximadamente 50%, sugerindo que YpsB é recrutada depois que o anel Z é montado. Para determinar quando YpsB chega ao divisomo, usamos mutantes termo-sensíveis das proteínas de divisão que revelaram a dependência de YpsB pelo sub complexo DivIB-DivIC-FtsL-FtsW-PBP2B. Já na ausência de DivIVA, YpsB continua associado ao divisomo, indicando que não depende do seu parálogo para localizar. Além disso, análises de deleções de YpsB mostraram que a porção N-terminal da proteína é a mais importante para o seu recrutamento ao divisomo. Para determinarmos o papel de YpsB durante a divisão foi construído um mutante com deleção completa do gene. DivIVA é uma proteína responsável por localizar o sistema Min nos pólos da bactéria e assim contribui para a precisão espacial da divisão. Apesar de serem parálogos, a função de YpsB, no entanto, parece ser diferente da de DivIVA. Análise do mutante ypsB- mostrou que na sua ausência, o divisomo é montado e o seu posicionamento tanto em fase vegetativa como em esporulação não são afetados. Como a ausência de YpsB não afeta perceptivelmente a divisão, combinamos a mutação em ypsB com mutações em outros genes envolvidos em divisão. A análise destes duplos mutantes revelou que a ausência simultânea de YpsB e FtsA produz exacerbada lise celular e letalidade. Com base neste fenótipo e em evidências evolutivas, sugerimos que YpsB esteja envolvida na regulação da síntese de peptideoglicano do septo. Mais especificamente, YpsB seria responsável por modular a atividade de PBP1, uma enzima necessária para a síntese de peptideoglicano septal. / In prokaryotes, the main form of reproduction is binary fission, which allows the mother-cell to give origin the two daughter-cells, with identical genetic material. In Bacillus subtilis, this process is performed by the divisome, a complex formed for approximately sixteen proteins that leads to the constriction of the membrane and the wall, creating the division septum. The assembly of the divisome is coordinated by FtsZ, a homolog of tubulin, that polymerizes in the central region of the bacteria and serves as the base for the assembly of the divisome. From a detailed survey of the distribution of the genes involved in division in complete genomes of prokaryotes, we detected that divIVA, a well characterized division gene, showed a paralog in B. subtilis, known as YpsB. To determine if YpsB would be a new component of the divisome, a cytological and functional characterization of this protein was carried out. We used fluorescence microscopy and fusion of YpsB to GFP to determine the subcellular localization of YpsB. These experiments displayed that YpsB is present in the divisome, with similar but not identical localization as DivIVA. Measuring co-localization between the Z ring and YpsB demonstrated that this happened in approximately 50% of the cells, suggesting that YpsB go to the divisome after the Z ring is formed. To determine when YpsB goes to the divisome, we used temperature-sensitive mutants of the division proteins. This showed that YpsB depends on the DivIB-DivIC-FtsL-FtsW-PBP2B sub-complex to associate with the divisome. In the absence of DivIVA, YpsB is still present in the divisome, indicating that it does not depend on its paralog to localize. Moreover, deletion analyses of YpsB showed that the N-terminal portion of the protein is the most important for its recruitment to the divisome. To determine the role of YpsB during division, we constructed a ypsB- mutant. DivIVA is the protein responsible for localization of the Min system in polar regions of B. subtilis and, thus, contributes for the spatial precision of division. Our results showed that the function of YpsB must be different from that of DivIVA, since analysis of the ypsB- mutant showed that in the absence this protein the divisome is assembled and septum position in vegetatively growing or sporulating cells is not affected. Since the absence of YpsB does not affect division, we combined the ypsB- mutant with mutants involved in division. Analysis of these double mutants showed that the simultaneous absence of YpsB and FtsA caused cellular lysis and lethality. Based on this phenotype and evolutionary evidences, we suggest that YpsB is involved in the regulation of peptidoglycan synthesis in the septum. More specifically, YpsB would be responsible for modulating the activity of PBP1, a necessary enzyme for septum peptidoglycan synthesis.
14

Estudo genético da interação entre FtsZ e o modulador de divisão ZapA em Bacillus subtilis / Genetic Study of the interaction between FtsZ and the division modulator ZapA in Bacillus subtilis

Bisson Filho, Alexandre Wilson 01 April 2009 (has links)
A citocinese bacteriana é controlada por diversas proteínas que se agrupam em um complexo chamado divisomo. O cerne do divisomo é constituído por FtsZ, uma proteína homóloga à tubulina eucariótica, que se auto-associa formando uma estrutura chamada anel Z. O anel Z serve como arcabouço e recruta diversas outras proteínas componentes do divisomo para o sítio onde o septo será sintetizado na célula. A formação do anel Z é modulada por proteínas que se ligam diretamente a FtsZ e regulam a sua auto-associação, tanto induzindo como inibindo a sua polimerização. Apesar de muitos destes moduladores de FtsZ já serem conhecidos, muito pouco se sabe sobre o mecanismo pelo qual eles controlam a estruturação do anel Z in vivo. O objetivo do presente trabalho foi estudar a interação entre FtsZ e um modulador de divisão, a proteína ZapA, da bactéria gram-positiva Bacillus subtilis. Para isso construímos uma biblioteca de mutantes de ftsZ por \"Error Prone PCR\", com aproximadamente 1 substituição por cópia de ftsZ e contendo um total de 1x105 clones. A partir dessa biblioteca, utilizamos duas triagens genéticas para identificar mutantes incapazes de interagir com ZapA. Na primeira estratégia, selecionamos 12 mutantes de FtsZ resistentes à superexpressão de uma forma tóxica de ZapA, que bloqueia a divisão, causando filamentação e morte das células. Surpreendentemente, apesar destes mutantes serem insensíveis ao efeito de ZapA, ensaios citológicos mostraram que nenhum deles perdeu a interação com ZapA. Como as mutações foram mapeadas nas vizinhanças do sítio catalítico e de polimerização de FtsZ, e como a maioria delas confere resistência cruzada aos efeitos de outros moduladores de FtsZ, suspeitamos que elas afetassem a estabilidade do polímero de FtsZ e, consequentemente, o comportamento do anel Z. Essas suspeitas foram confirmadas em ensaios de FRAP e cálculos de proporção de FtsZ no anel Z, indicando que os mutantes formam um anel Z mais estável que o normal. Como não obtivemos mutantes que perderam a interação com ZapA na primeira triagem, aplicamos a biblioteca em uma segunda estratégia de triagem genética, procurando um mutante de FtsZ que voltasse a interagir com um mutante de ZapA que não se liga mais a FtsZ (ZapAN62A). Esta estratégia de ganho de função identificou um candidato, FtsZE91V , que, tanto por critérios genéticos como citológicos, voltou a interagir com ZapAN62A. Apesar do mutante FtsZE91V mostrar-se capaz de restaurar a interação com ZapAN62A, ele não afetou a interação com ZapA selvagem, segundo nossos ensaios de microscopia de fluorescência e viabilidade. O mutante FtsZE91V, mapeia na hélice H3 de FtsZ. Esta hélice está exposta na superfície de FtsZ (compõe um dos lados da molécula de FtsZ) de uma maneira compatível com a idéia de que ela seria importante para interações laterais entre polímeros de FtsZ. Nossos resultados apontam, portanto, que a hélice H3 deve ser o sítio de interação para ZapA em FtsZ. / The bacterial cytokinesis is ruled by a number of proteins that constitute the divisome complex. FtsZ, a homologue of eukaryotic tubulin, is the main component of the divisome and self-associates in a structure named Z ring. The Z ring works as a scaffold and recruits the other components of divisome, establishing itself where the septum will be synthesized in the cell. Some of these proteins interact directly with FtsZ and control self-association, promoting polymerization or preventing it. Although there have been discovered many of FtsZ modulators, little is known about the mechanisms that control the formation of the Z ring in vivo. The aim of this work was study de interaction between FtsZ e one of its division modulators, ZapA protein, on Bacillus subtilis grampositive bacteria. We created a mutagenized ftsZ plasmid library by error prone PCR, which contained 1,0x105 transformants and exhibited a mutation rate of one substitution per ftsZ copy. The library was transformed into a modified Bacillus subtilis strain and we performed two genetic screenings to select cells with FtsZ mutants incapable of interacting with ZapA. In first strategy, we selected 12 resistant ftsZ mutants for a toxic ZapA overexpression, that blocked division and caused filamentation and cell death. Surprisingly, although these mutants were insensitive to ZapA effect, cytological assays showed that none of them lost interaction with ZapA. As the substitutions were mapped around the catalytic and interaction site of FtsZ structure and showed resistance to other modulators, we suspected that the mutations were affecting the polymer stability of FtsZ and, consequently, the behavior of Z ring. This hypothesis was confirmed by FRAP experiments and by calculations of FtsZ proportions in Z ring, pointing out that the mutants form more stable Z rings. As we didnt\' find mutants that lost their ZapA´s interaction, we applied our library in a second genetic screen, looking for mutants that return to interact with a ZapA mutant (ZapAN62A) that doesn´t bind to FtsZ anymore. This gain of function strategy identified one candidate, FtsZE91V, which returns to interact with ZapAN62A in our genetic and cytological assays. Although the mutant FtsZE91V showed itself capable to interact with ZapAN62A, that didn´t affect the interaction with wild type ZapA by our fluorescent microscopy and viability assays. The substitution E91V was mapped on H3 helix of FtsZ structure. This helix is exposed on FtsZ surfaces (on FtsZ´s lateral side), being compatible with the idea that lateral interaction is important in FtsZ polymers. So, we concluded that helix H3 is the binding site of ZapA in FtsZ.
15

Identificação e caracterização de novos moduladores da divisão em Bacillus subtilis / Identification and characterization of new modulators of division in B. subtilis

José Roberto Tavares 31 July 2009 (has links)
Em procariotos, a principal forma de reprodução é a divisão binária, que permite à célula-mãe dar origem a duas outras células-filhas, com conteúdo genético idêntico ao da progenitora. Em Bacillus subtilis este processo acontece graças ao divisomo, um complexo formado por aproximadamente dezesseis proteínas, que leva à constrição da membrana e da parede, formando o septo de divisão. A montagem do divisomo é coordenada por FtsZ, um homólogo de tubulina, que polimeriza na região central da bactéria e serve de arcabouço para a montagem do divisomo. Partindo de um levantamento detalhado da distribuição dos genes envolvidos em divisão em genomas completos de procariotos detectamos que divIVA, um gene de divisão já bem caracterizado, apresentava um gene parálogo em B. subtilis, conhecido como ypsB. Para determinarmos se YpsB seria um novo componente do divisomo foi realizada uma caracterização citológica e funcional desta proteína. Utilizamos microscopia de fluorescência e fusões de YpsB a GFP para determinar a localização subcelular de YpsB. Estes experimentos revelaram que YpsB está presente no divisomo, apresentando um padrão de localização semelhante mas não idêntico ao de DivIVA. Medindo-se a taxa de co-localização entre o anel Z e YpsB ficou demonstrado que estas proteínas co-localizam em aproximadamente 50%, sugerindo que YpsB é recrutada depois que o anel Z é montado. Para determinar quando YpsB chega ao divisomo, usamos mutantes termo-sensíveis das proteínas de divisão que revelaram a dependência de YpsB pelo sub complexo DivIB-DivIC-FtsL-FtsW-PBP2B. Já na ausência de DivIVA, YpsB continua associado ao divisomo, indicando que não depende do seu parálogo para localizar. Além disso, análises de deleções de YpsB mostraram que a porção N-terminal da proteína é a mais importante para o seu recrutamento ao divisomo. Para determinarmos o papel de YpsB durante a divisão foi construído um mutante com deleção completa do gene. DivIVA é uma proteína responsável por localizar o sistema Min nos pólos da bactéria e assim contribui para a precisão espacial da divisão. Apesar de serem parálogos, a função de YpsB, no entanto, parece ser diferente da de DivIVA. Análise do mutante ypsB- mostrou que na sua ausência, o divisomo é montado e o seu posicionamento tanto em fase vegetativa como em esporulação não são afetados. Como a ausência de YpsB não afeta perceptivelmente a divisão, combinamos a mutação em ypsB com mutações em outros genes envolvidos em divisão. A análise destes duplos mutantes revelou que a ausência simultânea de YpsB e FtsA produz exacerbada lise celular e letalidade. Com base neste fenótipo e em evidências evolutivas, sugerimos que YpsB esteja envolvida na regulação da síntese de peptideoglicano do septo. Mais especificamente, YpsB seria responsável por modular a atividade de PBP1, uma enzima necessária para a síntese de peptideoglicano septal. / In prokaryotes, the main form of reproduction is binary fission, which allows the mother-cell to give origin the two daughter-cells, with identical genetic material. In Bacillus subtilis, this process is performed by the divisome, a complex formed for approximately sixteen proteins that leads to the constriction of the membrane and the wall, creating the division septum. The assembly of the divisome is coordinated by FtsZ, a homolog of tubulin, that polymerizes in the central region of the bacteria and serves as the base for the assembly of the divisome. From a detailed survey of the distribution of the genes involved in division in complete genomes of prokaryotes, we detected that divIVA, a well characterized division gene, showed a paralog in B. subtilis, known as YpsB. To determine if YpsB would be a new component of the divisome, a cytological and functional characterization of this protein was carried out. We used fluorescence microscopy and fusion of YpsB to GFP to determine the subcellular localization of YpsB. These experiments displayed that YpsB is present in the divisome, with similar but not identical localization as DivIVA. Measuring co-localization between the Z ring and YpsB demonstrated that this happened in approximately 50% of the cells, suggesting that YpsB go to the divisome after the Z ring is formed. To determine when YpsB goes to the divisome, we used temperature-sensitive mutants of the division proteins. This showed that YpsB depends on the DivIB-DivIC-FtsL-FtsW-PBP2B sub-complex to associate with the divisome. In the absence of DivIVA, YpsB is still present in the divisome, indicating that it does not depend on its paralog to localize. Moreover, deletion analyses of YpsB showed that the N-terminal portion of the protein is the most important for its recruitment to the divisome. To determine the role of YpsB during division, we constructed a ypsB- mutant. DivIVA is the protein responsible for localization of the Min system in polar regions of B. subtilis and, thus, contributes for the spatial precision of division. Our results showed that the function of YpsB must be different from that of DivIVA, since analysis of the ypsB- mutant showed that in the absence this protein the divisome is assembled and septum position in vegetatively growing or sporulating cells is not affected. Since the absence of YpsB does not affect division, we combined the ypsB- mutant with mutants involved in division. Analysis of these double mutants showed that the simultaneous absence of YpsB and FtsA caused cellular lysis and lethality. Based on this phenotype and evolutionary evidences, we suggest that YpsB is involved in the regulation of peptidoglycan synthesis in the septum. More specifically, YpsB would be responsible for modulating the activity of PBP1, a necessary enzyme for septum peptidoglycan synthesis.
16

Estudo genético da interação entre FtsZ e o modulador de divisão ZapA em Bacillus subtilis / Genetic Study of the interaction between FtsZ and the division modulator ZapA in Bacillus subtilis

Alexandre Wilson Bisson Filho 01 April 2009 (has links)
A citocinese bacteriana é controlada por diversas proteínas que se agrupam em um complexo chamado divisomo. O cerne do divisomo é constituído por FtsZ, uma proteína homóloga à tubulina eucariótica, que se auto-associa formando uma estrutura chamada anel Z. O anel Z serve como arcabouço e recruta diversas outras proteínas componentes do divisomo para o sítio onde o septo será sintetizado na célula. A formação do anel Z é modulada por proteínas que se ligam diretamente a FtsZ e regulam a sua auto-associação, tanto induzindo como inibindo a sua polimerização. Apesar de muitos destes moduladores de FtsZ já serem conhecidos, muito pouco se sabe sobre o mecanismo pelo qual eles controlam a estruturação do anel Z in vivo. O objetivo do presente trabalho foi estudar a interação entre FtsZ e um modulador de divisão, a proteína ZapA, da bactéria gram-positiva Bacillus subtilis. Para isso construímos uma biblioteca de mutantes de ftsZ por \"Error Prone PCR\", com aproximadamente 1 substituição por cópia de ftsZ e contendo um total de 1x105 clones. A partir dessa biblioteca, utilizamos duas triagens genéticas para identificar mutantes incapazes de interagir com ZapA. Na primeira estratégia, selecionamos 12 mutantes de FtsZ resistentes à superexpressão de uma forma tóxica de ZapA, que bloqueia a divisão, causando filamentação e morte das células. Surpreendentemente, apesar destes mutantes serem insensíveis ao efeito de ZapA, ensaios citológicos mostraram que nenhum deles perdeu a interação com ZapA. Como as mutações foram mapeadas nas vizinhanças do sítio catalítico e de polimerização de FtsZ, e como a maioria delas confere resistência cruzada aos efeitos de outros moduladores de FtsZ, suspeitamos que elas afetassem a estabilidade do polímero de FtsZ e, consequentemente, o comportamento do anel Z. Essas suspeitas foram confirmadas em ensaios de FRAP e cálculos de proporção de FtsZ no anel Z, indicando que os mutantes formam um anel Z mais estável que o normal. Como não obtivemos mutantes que perderam a interação com ZapA na primeira triagem, aplicamos a biblioteca em uma segunda estratégia de triagem genética, procurando um mutante de FtsZ que voltasse a interagir com um mutante de ZapA que não se liga mais a FtsZ (ZapAN62A). Esta estratégia de ganho de função identificou um candidato, FtsZE91V , que, tanto por critérios genéticos como citológicos, voltou a interagir com ZapAN62A. Apesar do mutante FtsZE91V mostrar-se capaz de restaurar a interação com ZapAN62A, ele não afetou a interação com ZapA selvagem, segundo nossos ensaios de microscopia de fluorescência e viabilidade. O mutante FtsZE91V, mapeia na hélice H3 de FtsZ. Esta hélice está exposta na superfície de FtsZ (compõe um dos lados da molécula de FtsZ) de uma maneira compatível com a idéia de que ela seria importante para interações laterais entre polímeros de FtsZ. Nossos resultados apontam, portanto, que a hélice H3 deve ser o sítio de interação para ZapA em FtsZ. / The bacterial cytokinesis is ruled by a number of proteins that constitute the divisome complex. FtsZ, a homologue of eukaryotic tubulin, is the main component of the divisome and self-associates in a structure named Z ring. The Z ring works as a scaffold and recruits the other components of divisome, establishing itself where the septum will be synthesized in the cell. Some of these proteins interact directly with FtsZ and control self-association, promoting polymerization or preventing it. Although there have been discovered many of FtsZ modulators, little is known about the mechanisms that control the formation of the Z ring in vivo. The aim of this work was study de interaction between FtsZ e one of its division modulators, ZapA protein, on Bacillus subtilis grampositive bacteria. We created a mutagenized ftsZ plasmid library by error prone PCR, which contained 1,0x105 transformants and exhibited a mutation rate of one substitution per ftsZ copy. The library was transformed into a modified Bacillus subtilis strain and we performed two genetic screenings to select cells with FtsZ mutants incapable of interacting with ZapA. In first strategy, we selected 12 resistant ftsZ mutants for a toxic ZapA overexpression, that blocked division and caused filamentation and cell death. Surprisingly, although these mutants were insensitive to ZapA effect, cytological assays showed that none of them lost interaction with ZapA. As the substitutions were mapped around the catalytic and interaction site of FtsZ structure and showed resistance to other modulators, we suspected that the mutations were affecting the polymer stability of FtsZ and, consequently, the behavior of Z ring. This hypothesis was confirmed by FRAP experiments and by calculations of FtsZ proportions in Z ring, pointing out that the mutants form more stable Z rings. As we didnt\' find mutants that lost their ZapA´s interaction, we applied our library in a second genetic screen, looking for mutants that return to interact with a ZapA mutant (ZapAN62A) that doesn´t bind to FtsZ anymore. This gain of function strategy identified one candidate, FtsZE91V, which returns to interact with ZapAN62A in our genetic and cytological assays. Although the mutant FtsZE91V showed itself capable to interact with ZapAN62A, that didn´t affect the interaction with wild type ZapA by our fluorescent microscopy and viability assays. The substitution E91V was mapped on H3 helix of FtsZ structure. This helix is exposed on FtsZ surfaces (on FtsZ´s lateral side), being compatible with the idea that lateral interaction is important in FtsZ polymers. So, we concluded that helix H3 is the binding site of ZapA in FtsZ.
17

Cell Cycle Associated Gene Expression Predicts Function in Mycobacteria

Bandekar, Aditya C. 07 April 2020 (has links)
While the major events in prokaryotic cell cycle progression are likely to be coordinated with transcriptional and metabolic changes, these processes remain poorly characterized. Unlike many rapidly-growing bacteria, DNA replication and cell division are temporally-resolved in mycobacteria, making these slow-growing organisms a potentially useful system to investigate the prokaryotic cell cycle. To determine if cell-cycle dependent gene regulation occurs in mycobacteria, we characterized the temporal changes in the transcriptome of synchronously replicating populations of Mycobacterium tuberculosis (Mtb). By enriching for genes that display a sinusoidal expression pattern, we discover 485 genes that oscillate with a period consistent with the cell cycle. During cytokinesis, the timing of gene induction could be used to predict the timing of gene function, as mRNA abundance was found to correlate with the order in which proteins were recruited to the developing septum. Similarly, the expression pattern of primary metabolic genes could be used to predict the relative importance of these pathways for different cell cycle processes. Pyrimidine synthetic genes peaked during DNA replication and their depletion caused a filamentation phenotype that phenocopied defects in this process. In contrast, the IMP dehydrogenase guaB2 dedicated to guanosine synthesis displayed the opposite expression pattern and its depletion perturbed septation. Together, these data imply obligate coordination between primary metabolism and cell division, and identify periodically regulated genes that can be related to specific cell biological functions.
18

Single-molecule Imaging of the Cell Division Ring in Escherichia coli Using the ALFA-tag / Enmolekyl-mikroskopi av delningsringen i Escherichia coli med användandet av ALFA-taggen

Westlund, Emma January 2023 (has links)
The use of super-resolution (SR) microscopy is an important tool for understanding the inside mechanisms of bacterial cells. However, for SR imaging, the labelling of the proteins of interest is a great challenge as flourescent proteins (FPs) are often too big to be directly fused to the target protein and traditional immunolabelling with antibodies creates too long separation between the fluorophore and the target protein. In an attempt to overcome this hurdle, the Escherichia coli (E. coli) cell division protein FtsZ is in this project fused to a nanotag (NT) that is subsequently labelled with a nanobody (NB). The ALFA-tag, a short amino acid peptide, is chromosomally fused to the target protein, creating a MG1655/FtsZ-ALFA strain where all FtsZ proteins have an ALFA-tag attached. Recognising the ALFA-tag is the NB αALFA (anti-ALFA) which is fused to a FP and expressed from a plasmid. The MG1655/FtsZ-ALFA strain is labelled using standard plasmid transformation which allows for live cell imaging of the division ring in E. coli. Both FPs sfGFP and mEos3.2 are used for labelling which means that the cells can be imaged in epifluorescence microscopy and single-molecule Photo-Activated Localisation Microscopy (PALM), and even single-molecule time lapses of the constricting FtsZ-ring is possible. This system is also applicable to other bacterial proteins. / Superupplösningsmikroskopi (SUM) är ett viktigt redskap för att förstå de inre processerna i en bakteriecell. Att på ett framgångsrikt sätt tagga målproteinerna har dock visat sig vara en utmaning för SUM. Att direkttagga målproteinerna med fluorescerande protein är oftast inte möjligt på grund av de fluorescerande proteinernas storlek och traditionell märkning med antikroppar skapar ett för stort avstånd mellan fluorofor och målprotein. För att överkomma detta problem taggas här celldelningsproteinet FtsZ iEscherichia coli (E. coli) med hjälp av nanotaggar (NT) och nanokroppar (NK). ALFA-taggen, en kort aminosyrapeptid, är kromosomt bunden till FtsZ i cellinjen MG1655/FtsZ-ALFA, så att varje FtsZ protein som produceras har en ALFA-tag bunden till sig. NK αALFA (anti-ALFA) känner igen och binder till ALFA-taggen när de kommer i kontakt. NK är bunden till ett fluorescerande protein och uttryckt från en plasmid vilket gör att MG1655/FtsZ-ALFA kan bli taggad med hjälp av vanlig plasmidtransformation. Denna metod möjliggör mikroskopi av divisionsringen i levande E. coli-celler. Två olika fluorescerande protein används, sfGFP och mEos3.2, vilket innebär att både epifluorensmikroskopi och fotoaktiverad lokaliseringsmikroskopi (PALM) kan användas. Dessutom är även intervallfotografering i enmolekylmikroskopi av divisionsringens konstriktion möjligt. Denna märkningsteknik är vidare applicerbar på andra bakteriella protein.

Page generated in 0.0436 seconds