• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 5
  • 2
  • 1
  • Tagged with
  • 29
  • 14
  • 13
  • 10
  • 10
  • 9
  • 9
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Dlx homeobox genes and their role in interneuronal differentiation and migration in the developing forebrain.

Le, Trung Ngoc 12 April 2010 (has links)
Understanding the specificity of homeobox genes has been hampered by the lack of verified direct transcriptional targets. The Dlx family of homeobox genes is expressed in the ganglionic eminences of the developing forebrain. Dlx1/Dlx2 double knockout (DKO) mice die at birth. Phenotypic analyses demonstrate abnormal development of the basal telencephalon, including defects in neuronal differentiation in the basal ganglia, reduced expression of GABA in the basal telencephalon, and loss of migration of GABAergic inhibitory interneurons to the neocortex. The mechanisms underlying DLX protein regulation of differentiation and migration of GABAergic interneurons are poorly defined. We have successfully applied chromatin immunoprecipitation to identify potential direct transcriptional targets of DLX homeoproteins from embryonic tissues in vivo. Reporter gene assays demonstrated the transcriptional significance of the binding of DLX proteins to different downstream regulatory elements, which were confirmed in vitro by electrophoretic mobility shift assay and site-directed mutagenesis. The functional significance of DLX mediated transcriptional regulation of these targets was further elaborated through several series of loss-of-function assays including gene expression in Dlx1/2 knockout embryonic forebrain tissues, as well as siRNA or Lentiviral mediated shRNA knockdown experiments with primary forebrain cultures. Quantitative analysis of the regulatory effect of Dlx genes on various forebrain markers of differentiation and migration was performed using in situ hybridization, high-performance liquid chromatography coupled with cell counting. Neuronal migration was assessed by forebrain explants and diI labelling of migratory cells from ganglionic eminence to neocortex. We have demonstrated that DLX1 and DLX2 can transcriptionally activate (Gad1, Gad2) or repress (Nrp2) different downstream targets. In the Dlx1/2 DKO, reduction of GABA expression and failure of GABAergic interneurons to migrate to the neocortex is partly due to loss or aberrant expression of these DLX downstream targets. In the triple Dlx1/2; Nrp2KO, partial restoration of tangential migration of GABAergic interneurons from basal ganglia to the neocortex was successfully established signifying the importance of DLX regulation of Semaphorin-Neuropilin signalling during forebrain development.
22

Dlx homeobox genes and their role in interneuronal differentiation and migration in the developing forebrain.

Le, Trung Ngoc 12 April 2010 (has links)
Understanding the specificity of homeobox genes has been hampered by the lack of verified direct transcriptional targets. The Dlx family of homeobox genes is expressed in the ganglionic eminences of the developing forebrain. Dlx1/Dlx2 double knockout (DKO) mice die at birth. Phenotypic analyses demonstrate abnormal development of the basal telencephalon, including defects in neuronal differentiation in the basal ganglia, reduced expression of GABA in the basal telencephalon, and loss of migration of GABAergic inhibitory interneurons to the neocortex. The mechanisms underlying DLX protein regulation of differentiation and migration of GABAergic interneurons are poorly defined. We have successfully applied chromatin immunoprecipitation to identify potential direct transcriptional targets of DLX homeoproteins from embryonic tissues in vivo. Reporter gene assays demonstrated the transcriptional significance of the binding of DLX proteins to different downstream regulatory elements, which were confirmed in vitro by electrophoretic mobility shift assay and site-directed mutagenesis. The functional significance of DLX mediated transcriptional regulation of these targets was further elaborated through several series of loss-of-function assays including gene expression in Dlx1/2 knockout embryonic forebrain tissues, as well as siRNA or Lentiviral mediated shRNA knockdown experiments with primary forebrain cultures. Quantitative analysis of the regulatory effect of Dlx genes on various forebrain markers of differentiation and migration was performed using in situ hybridization, high-performance liquid chromatography coupled with cell counting. Neuronal migration was assessed by forebrain explants and diI labelling of migratory cells from ganglionic eminence to neocortex. We have demonstrated that DLX1 and DLX2 can transcriptionally activate (Gad1, Gad2) or repress (Nrp2) different downstream targets. In the Dlx1/2 DKO, reduction of GABA expression and failure of GABAergic interneurons to migrate to the neocortex is partly due to loss or aberrant expression of these DLX downstream targets. In the triple Dlx1/2; Nrp2KO, partial restoration of tangential migration of GABAergic interneurons from basal ganglia to the neocortex was successfully established signifying the importance of DLX regulation of Semaphorin-Neuropilin signalling during forebrain development.
23

Functional Analysis of the Cis-Regulatory Elements I56i, I56ii and I12b that Control Dlx Gene Expression in the Developing Forebrain of Mouse and Zebrafish

Yu, Man 22 August 2011 (has links)
The vertebrate Dlx gene family consists of multiple convergently transcribed bigene clusters and encodes a group of homeodomain-containing transcription factors crucial for the development of forebrain, branchial arches, sensory organs and limbs. At least four cis-regulatory elements (CREs) are responsible for Dlx expression in the forebrain: URE2 and I12b in the Dlx1/Dlx2 (zebrafish dlx1a/dlx2a) locus, and, I56i and I56ii in the Dlx5/Dlx6 (zebrafish dlx5a/dlx6a) locus. Here, we first show that unlike the other three enhancers, mouse I56ii CRE targets a group of GABAergic projection neurons expressing striatal markers Meis2 and Islet1. Meis2 and Islet1 proteins can activate reporter gene transcription via the I56ii CRE, suggesting that they may be potential upstream regulators of Dlx genes in vivo. To determine whether there exists a dlx-mediated regulatory pathway during zebrafish GABAergic neuron formation, we establish two independent lines of transgenic fish in which the GFP reporter gene is controlled by a 1.4kb dlx5a/dlx6a intergenic sequence (encompassing zebrafish I56i and I56ii) and a 1.1kb fragment containing only I56i CRE, respectively. Our observations reveal that dlx5a/dlx6a regulatory elements exhibit a fairly specific activity in the zebrafish forebrain and may be essential for GABAergic neuron generation, while I56i and I56ii are likely to play distinct roles in modulating this process in different subpopulations of cells. Disruption of dlx1a/dlx2a or dlx5a/dlx6a function leads to a marked decrease of enhancer activity in the diencephalon and midbrain as well as a comparatively lesser extent of reduction in the telencephalon. In order to define the specific contribution of various individual CREs to overall Dlx regulation, we also generate a mutant mouse model in which I12b CRE is selectively deleted. Despite that mice homozygous for I12b loss develop normally and harbor no overt morphological defects in the forebrain, targeted deletion of this enhancer results in a significant reduction of Dlx1/Dlx2 transcript levels and seemingly perturbs cell proliferation in the subpallial telencephalon, particularly in the ventricular and subventricular zones of ganglionic eminences. Taken together, these data illustrate a complex and dynamic Dlx regulation in the early developing forebrain through the implications of multiple Dlx CREs with overlapping and diverse functions.
24

Functional Analysis of Dlx Intergenic Enhancers in the Developing Mouse Forebrain

Fazel Darbandi, Siavash 08 May 2014 (has links)
The Distal-less homeobox (Dlx) genes encode a group of transcription factors that are involved in various developmental processes including forebrain development. Dlx genes are arranged in convergently transcribed bigene clusters with enhancer sequences located in the intergenic region of each cluster. The expression patterns of Dlx1/Dlx2 and of Dlx5/Dlx6 are attributed in part to the activity of I12a/I12b and I56i/I56ii intergenic enhancers, respectively. In an effort to determine how Dlx intergenic enhancers interact with the promoter regions of each cluster, I employed the Chromosome Conformation Capture (3C) technique on developing forebrain at E13.5 and E15.5. My 3C analysis provided potential enhancer-promoter interaction, in cis, that are consistent with previously known regulatory mechanisms. Furthermore, trans interactions may exist between Dlx1/Dlx2 and Dlx5/Dlx6 clusters in the developing forebrain at E13.5, thus providing a possible novel cross-regulatory mechanism between these two loci. I have also investigated the phenotypic consequences of Dlx enhancer deletion(s) on forebrain development by characterizing mice with I56ii and I56ii/I12b enhancer deletions. Enhancer deletions significantly impair Dlx expression as well as that of Evf2, Gad2 and of the striatal markers Islet1 and Meis2. Enhancer deletion(s) also reduce the expression of ISLET1 and CTIP2 proteins and Semaphorin 3A, Slit1 and Ephrin A5 that are thought to provide guidance cues in the corridor cells. Overall, these changes may disrupt the guidance of the thalamocortical axons. The data presented here further our understanding of the interactions between Dlx intergenic enhancers and promoter regions. Enhancer deletion(s) furthers our understanding of Dlx regulatory networks necessary that ensure proper Dlx expression, which, in turn may be involved in a genetic pathway underlying the synthesis of GABA, which may be further essential in maintaining the GABAergic phenotype.
25

Functional Analysis of the Cis-Regulatory Elements I56i, I56ii and I12b that Control Dlx Gene Expression in the Developing Forebrain of Mouse and Zebrafish

Yu, Man January 2011 (has links)
The vertebrate Dlx gene family consists of multiple convergently transcribed bigene clusters and encodes a group of homeodomain-containing transcription factors crucial for the development of forebrain, branchial arches, sensory organs and limbs. At least four cis-regulatory elements (CREs) are responsible for Dlx expression in the forebrain: URE2 and I12b in the Dlx1/Dlx2 (zebrafish dlx1a/dlx2a) locus, and, I56i and I56ii in the Dlx5/Dlx6 (zebrafish dlx5a/dlx6a) locus. Here, we first show that unlike the other three enhancers, mouse I56ii CRE targets a group of GABAergic projection neurons expressing striatal markers Meis2 and Islet1. Meis2 and Islet1 proteins can activate reporter gene transcription via the I56ii CRE, suggesting that they may be potential upstream regulators of Dlx genes in vivo. To determine whether there exists a dlx-mediated regulatory pathway during zebrafish GABAergic neuron formation, we establish two independent lines of transgenic fish in which the GFP reporter gene is controlled by a 1.4kb dlx5a/dlx6a intergenic sequence (encompassing zebrafish I56i and I56ii) and a 1.1kb fragment containing only I56i CRE, respectively. Our observations reveal that dlx5a/dlx6a regulatory elements exhibit a fairly specific activity in the zebrafish forebrain and may be essential for GABAergic neuron generation, while I56i and I56ii are likely to play distinct roles in modulating this process in different subpopulations of cells. Disruption of dlx1a/dlx2a or dlx5a/dlx6a function leads to a marked decrease of enhancer activity in the diencephalon and midbrain as well as a comparatively lesser extent of reduction in the telencephalon. In order to define the specific contribution of various individual CREs to overall Dlx regulation, we also generate a mutant mouse model in which I12b CRE is selectively deleted. Despite that mice homozygous for I12b loss develop normally and harbor no overt morphological defects in the forebrain, targeted deletion of this enhancer results in a significant reduction of Dlx1/Dlx2 transcript levels and seemingly perturbs cell proliferation in the subpallial telencephalon, particularly in the ventricular and subventricular zones of ganglionic eminences. Taken together, these data illustrate a complex and dynamic Dlx regulation in the early developing forebrain through the implications of multiple Dlx CREs with overlapping and diverse functions.
26

Functional Analysis of Dlx Intergenic Enhancers in the Developing Mouse Forebrain

Fazel Darbandi, Siavash January 2014 (has links)
The Distal-less homeobox (Dlx) genes encode a group of transcription factors that are involved in various developmental processes including forebrain development. Dlx genes are arranged in convergently transcribed bigene clusters with enhancer sequences located in the intergenic region of each cluster. The expression patterns of Dlx1/Dlx2 and of Dlx5/Dlx6 are attributed in part to the activity of I12a/I12b and I56i/I56ii intergenic enhancers, respectively. In an effort to determine how Dlx intergenic enhancers interact with the promoter regions of each cluster, I employed the Chromosome Conformation Capture (3C) technique on developing forebrain at E13.5 and E15.5. My 3C analysis provided potential enhancer-promoter interaction, in cis, that are consistent with previously known regulatory mechanisms. Furthermore, trans interactions may exist between Dlx1/Dlx2 and Dlx5/Dlx6 clusters in the developing forebrain at E13.5, thus providing a possible novel cross-regulatory mechanism between these two loci. I have also investigated the phenotypic consequences of Dlx enhancer deletion(s) on forebrain development by characterizing mice with I56ii and I56ii/I12b enhancer deletions. Enhancer deletions significantly impair Dlx expression as well as that of Evf2, Gad2 and of the striatal markers Islet1 and Meis2. Enhancer deletion(s) also reduce the expression of ISLET1 and CTIP2 proteins and Semaphorin 3A, Slit1 and Ephrin A5 that are thought to provide guidance cues in the corridor cells. Overall, these changes may disrupt the guidance of the thalamocortical axons. The data presented here further our understanding of the interactions between Dlx intergenic enhancers and promoter regions. Enhancer deletion(s) furthers our understanding of Dlx regulatory networks necessary that ensure proper Dlx expression, which, in turn may be involved in a genetic pathway underlying the synthesis of GABA, which may be further essential in maintaining the GABAergic phenotype.
27

Patterning and Stabilizing the Zebrafish Pharyngeal Arch Intermediate Domain

Talbot, Jared Coffin, 1982- 09 1900 (has links)
xv, 76 p. : ill. (some col.) Includes 4 video files. / Improved understanding of pharyngeal arch (PA) patterning and morphogenesis can reveal critical insights into the origins of craniofacial diseases, such as Fraser syndrome. PAs contain mesenchymal condensations, which give rise to most of the facial skeleton in vertebrates. Studies of Endothelin1 signaling reveal that the skeleton derived from the first two PAs are patterned into dorsal, intermediate, and ventral domains. Previous work has indicated that endothelin targets, including the Dlx genes, homeotically pattern dorsal versus ventral PA identity. I show that the Dlx gene family plays a vital role in PA intermediate-domain identity establishment. In WT fish, the PA intermediate domain is delineated by combined expression of all Dlx genes. Reduction of Dlx gene function results in loss of intermediate-domain identity. Conversely, ventral expansion of Dlx expression, seen in hand2 mutants, results in ventral expansion of intermediate-domain identity. Hence, PA intermediate-domain identity is defined by co-expression of Dlx genes. Epithelial-mesenchymal interactions play an important part in PA intermediate-domain morphogenesis. Zebrafish fras1 (epithelially expressed) and itga8 (mesenchymally expressed) mutants also show specific defects within intermediate-domain skeleton and epithelia. Facial phenotypes in fras1;itga8 double mutants look extremely similar to either single mutant, suggesting that fras1 and itga8 might participate in the same epithelial-mesenchymal interaction during PA intermediate-domain formation. Our developmental studies reveal that fras1 - and itga8 -dependent epithelial segmentation of the PA intermediate domain stabilizes developing skeletal elements. Lesions in human FRAS1 underlie many cases of Fraser syndrome, and this work provides an excellent developmental model for the craniofacial defects found in Fraser syndrome. Loss of either Dlx or fras1 function produces defects in the PA intermediate domain, yet seemingly during different developmental periods. Nonetheless, combined reduction of both Dlx and fras1 function synergistically increases skeletal defects, implying a molecular connection between early (Dlx -mediated) pattern formation and later (fras1 -mediated) pattern stabilization. Elucidation of the Dlx-fras1 interaction is an interesting topic which may unveil new molecules pertinent to Fraser syndrome. Supplemental movies highlighting skeletal and epithelial morphogenesis accompany this dissertation. / Committee in charge: Judith S. Eisen, Chairperson; Charles B. Kimmel, Advisor; John H. Postlethwait, Member; Chris Q. Doe, Member; Kennith E. Prehoda, Outside Member
28

Studium dysregulace proteinu DLX1 v leukemických myeloidních buňkách v in vitro a in vivo modelech / Study of dysregulation of DLX1 protein in myeloid leukemia cells in in vitro and in vivo models

Jelínková, Alena January 2018 (has links)
The heterogeneous nature of acute myeloid leukemia (AML) worsens the results of patients treated with standard therapy. Understanding the processes of leukemogenesis can contribute to identification of more appropriate treatment. Family of DLX genes (Distal-less homeobox), belonging to the homeobox genes, are associated with haematological malignancies and solid tumors. In the analysis of expression data, the low level of the DLX1 gene was associated with a worse prognosis of patients with AML. In this work we studied phenotypic changes of cell lines with different expression of the DLX1 gene. We silenced the DLX1 gene in AML cell line (sh cells) and compared it to the parental line with higher expression of DLX1 (NSC cells). By cell cycle analysis and apoptosis assays in vitro and in vivo, we have observed the arrest of sh cells in the G0 phase and a lower number of apoptotic cells. Differences were found when measuring the absolute number of cells in time. In in vitro conditions there were less sh cells, in in vivo environment there was significantly higher number of sh cells engrafted in comparison to NSC cells. Further results have shown that sh cells have lower levels of pro-apoptotic proteins and exhibit a higher level of TGF-β targeting PAI-1 gene that activates replicative senescence. We...
29

EFFETS DES GLUCOCORTICOIDES SUR LA MISE EN PLACE DES CENTRES D'OSSIFICATION CHEZ L'EMBRYON DE RAT. <br>Implication de certains gènes du développement

Nadra, Rim 31 March 2004 (has links) (PDF)
Chez le fœtus de rat, en fin de gestation, le taux de glucocorticoïdes (GC) fœtal présente un pic de secrétion entre le 16ème et le 20ème jour de la vie embryonnaire, phénomène concomitant à l'apparition des centres d'ossification du 17ème au 19ème jour de gestation pour le calvaria et pour le septum nasal, respectivement. Dans le cartilage, les GC modulent l'effet des facteurs insulino-mimétiques (IGF-I et -II) par des mécanismes complexes et mal définis, auxquels nous nous sommes intéressés. Nos résultats montrent que les GC, en concentrations physiologiques, peuvent induire la biominéralisation des matrices extracellulaires des chondrocytes de septum nasal et des ostéoblastes du calvaria de fœtus du rat en culture primaire (augmentation de la phosphatase alcaline, du dépôt minéral, des GAG et du Co I). Dans le septum nasal, cette induction est liée à une régulation différentielle des IGFBP et de leurs fragments de dégradation. Les mécanismes moléculaires gouvernant la différenciation des structures craniofaciales par les GC, en particulier, la régulation des homéogènes de la famille Msx et Dlx par cette hormone, sont peu connus. Une partie de notre travail a donc consisté à décrypter l'effet des GC sur l'expression des gènes Msx-2, Dlx-5 et Runx-2 au cours de la minéralisation de calvaria de fœtus du rat. Nos résultats indiquent que les GC induisent, in vitro et in vivo, dans le calvaria de fœtus de rat, l'expression des homéogènes Msx-2, Dlx5 et du gène maître Runx-2, nécessaires à l'induction d'un marqueur fonctionnel de la biominéralisation, l'ostéocalcine. Dans notre laboratoire, l'implication du gène Msx-1 lors de l'amélogenèse et de la dentinogenèse ainsi que la présence d'un ARN antisens naturel de ce gène ont été montrées chez la souris. Nous avons mis en évidence un homologue de cet ARN AS chez le rat. Nos résultats montrent que ce dernier est exprimé au cours de la biominéralisation du calvaria de fœtus de rat, et permettront d'une part de poursuivre l'étude du rôle de cet ARN AS dans des modèles in vitro et in vivo, et d'autre part, d'aborder les mécanismes d'action de cet ARN AS.

Page generated in 0.04 seconds