Spelling suggestions: "subject:"kombinacija"" "subject:"dominación""
1 |
Prieveiksmių vartojimo dažnumas ir morfonologiniai jų kirčiavimo principai / The frequency and the morphonological principles of accentuation of adverbsMarcinkevičienė, Aušra 15 June 2006 (has links)
The adverb is the indeclinable and not inflective part of speech, who denotes the attribute of act, state, characteristic and different factors of act and state (place, time, reason, purpose and etc.). The adverb has the distinctive word-formation and derivation. Also the adverb has the distinctive accentuation. The accentuation of adverbs takes on a whole new dimension – morphonological dimension. Lithuanian language has the free accent, because of it morphonological features of morphemes determine the place of accent. There is an intensive interest in the frequency of different units of language now. Users has the possibility to use the Electronic Frequency Dictionary now. The base of this master‘s work are adverbs from Common Press Words of the 20th century: Electronic Frequency Dictionary (2004). There were more than 1200 adverbs in Electronic Frequency Dictionary. The derivatives of suffix -ai make about 67% of them. The mostly usable adverbs are these: dar, čia, dabar, daug, gerai, kaip, taip, daugiau, kur, kiek, ten, taip pat, vėl, jau, labai, todėl. The accentual domination of word-formation formants and the features of morphemes of underlying words determine the accentuation of adverbs derivatives. The accentual power of theme of underlying words and flexions and the attraction of flexions determine the accentuation of phrases (these phrases became adverbs) and the accentuation of other single adverbs. The short adverbs have the accent of underlying words.
|
2 |
Lokalizacije Geršgorinovog tipa za nelinearne probleme karakterističnih korena / Geršgorin-type localizations for Nonlinear Eigenvalue ProblemsGardašević Dragana 21 February 2019 (has links)
<p>Predmet istraživanja u doktorskoj disertaciji je metoda za konstrukciju<br />lokalizacionih skupova za spektar i pseudospektar nelinearnih problema<br />karakterističnih korena bazirana na Geršgorinovoj teoremi i njenim<br />generalizacijama koja koristi osobine poznatih podklasa H-matrica.<br />Navedena tvrđenja i primeri rasvetljavaju odnose između navedenih<br />lokalizacionih skupova, što je posebno značajno za primenu u praksi.<br />Sadržaj ovog rada time predstavlja polaznu tačku za dublja istraživanja na<br />temu konstrukcije lokalizacionih skupova za spektar i pseudospektar<br />nelinearnih problema karakterističnih korena Geršgorinovog tipa.</p> / <p>The subject of research in the doctoral dissertation is a method for constructing<br />spectra and pseudospectra localization sets for nonlinear eigenvalue problems<br />based on Geršgorin theorem and its generalizations, that uses the properties of<br />well-known subclasses of H-matrices. Theorems and examples given in this<br />paper are showing relations between stated localization sets, which is very<br />important for practical applications. Therefore, the content of this paper represent<br />the starting point for deeper explorations on the subject of constructing spectra<br />and pseudospectra localization sets for Geršgorin type nonlinear eigenvalue<br />problems.</p>
|
3 |
Generalizovana dijagonalna dominacija za blok matrice i mogućnosti njene primene / Generalized diagonal dominance for block matrices and possibilites of its applicationDoroslovački Ksenija 06 May 2014 (has links)
<p>Ova doktorska disertacija izučava matrice zapisane u blok formi. Ona<br />sistematizuje postojeća i predstavlja nova tvrđenja o osobinama takvih matrica,<br />koja se baziraju na ideji generalizovane dijagonalne dominacije. Poznati<br />rezultati u tačkastom slučaju dobra su osnova za blok generalizacije, koje su<br />izvedene na dva različita načina, prvi zbog svoje jednostavnije primenljivosti,<br />a drugi zbog obuhvatanja šire klase matrica na koju se rezultati odnose.</p> / <p>This thesis is related to matrices written in their block form. It systematizes known and<br />represents new knowledge about properties of such matrices, which is based on the idea<br />of generalized diagonal dominance. Known results in the point case serve as a good basis<br />for block generalization, which is done in two different ways, the first one because of its<br />simple usability, and the other for capturing wider class of matrices which are treated.</p>
|
Page generated in 0.0497 seconds