• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 4
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 48
  • 48
  • 10
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

CorrespondÃncia entre ondas de spin de um ferromagneto em uma rede favo de mel e a banda de energia do grafeno. / Correspondence between spin waves of a ferromagnet in a honeycomb network and the energy band of graphene.

Anderson Magno Chaves Cunha 20 June 2014 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / Ondas de spin sÃo excitaÃÃes coletivas que surgem em materiais magnÃticos. Essas excitaÃÃes sÃo causadas por perturbaÃÃes no sistema magnÃtico. Por exemplo, uma pequena variaÃÃo na temperatura provoca a precessÃo de um momento de dipolo magnÃtico que interage com seus vizinhos levando à propagaÃÃo dessa perturbaÃÃo. Essa perturbaÃÃo tem carÃter ondulatÃrio, e pode se propagar na direÃÃo de qualquer um dos vizinhos prÃximos. Essas ondas de spin podem ser observadas atravÃs de alguns mÃtodos experimentais, tais como: espalhamento inelÃstico de nÃutrons, espalhamento inelÃstico de luz incluindo espalhamento Raman e Brillouin. A importÃncia das ondas de spin surge claramente quando aparelhos magnetoeletrÃnicos sÃo operados a baixas frequÃncias. Nessa situaÃÃo a geraÃÃo de ondas de spin pode ser um processo significante na perda de energia desses sistemas, pois a excitaÃÃo de tais ondas consome uma pequena parte da energia do sistema, as tornando importante no processo de inovaÃÃo dos sistemas eletrÃnicos. Essas ondas podem ser estudadas atravÃs de modelos matemÃticos como o de Heisenberg, Ising, dentre outros. Nesse modelo, podemos calcular a relaÃÃo de dispersÃo das ondas de spin. O modelo de Heisenberg pode ser escrito em termos de operadores de criaÃÃo e destruiÃÃo atravÃs das transformaÃÃes de Holstein-Primakoff. O Hamiltoniano que descreve as ondas de spin à agora escrito em termos de operadores bosÃnicos. Essa descriÃÃo matemÃtica à semelhante ao Hamiltoniano Tight-Binding para fÃrmions. Tal Hamiltoniano descreve, por exemplo, o grafeno, um material que foi descoberto recentemente e vem sendo tratado com muito otimismo, por ter uma estrutura bidimensional que leva a propriedades surpreendentes. Muitas possibilidades de aplicaÃÃes para ele vÃm sendo estudadas. Nosso objetivo aqui à fazer uma analogia entre o grafeno e um sistema magnÃtico em uma rede favo de mel. No sistema magnÃtico, utilizamos o Modelo de Heisenberg para encontrar as relaÃÃes de dispersÃo e conhecer o comportamento das ondas de spin do mesmo. Enquanto no grafeno, utilizamos o modelo Tight-Binding para encontrar o espectro de energia. Ressaltando que utilizamos um mÃtodo matematicamente idÃntico para ambos e que as curvas encontradas para os modos de energia sÃo idÃnticas. EntÃo, calculamos como esses modos se comportam com a introduÃÃo de impurezas em substituiÃÃo em sÃtios de uma ou duas linhas da rede cristalina. / Spin waves are collective excitations that occur in magnetic materials. These excitations are caused by disturbances in the magnetic system. For example, a small change in temperature causes the precession of a magnetic dipole moment that interacts with neighboring leading to the spread of this disorder. This disturbance has wave character, and can propagate in the direction of any of the nearest neighbors. These waves of spin can be observed by some experimental methods, such as: the inelastic neutron scattering, inelastic scattering of light including Raman and Brillouin scattering, to name a few. The importance of spin waves emerges clearly when magnetoelectronic devices are operated at low frequencies. This situation, the generation of spin waves can sing in a significant loss of energy of these systems, because the excitation of such waves consumes a small part of the energy of the system, becoming important in the innovation process of electronic systems. These waves can be studied using mathematical models like the Heisenberg, Ising, among others. In this model, we can calculate the dispersion relation of the spin waves. The Heisenberg model can be written in terms of operators of creation and destruction through the Holstein-Primakoff transformations. The Hamiltonian that describes the spin waves is now written in terms of bosonic operators. This mathematical description is similar to Tight-Binding Hamiltonian for fermions. This Hamiltonian described, for example, graphene, a material that has recently been discovered and is being treated with much optimism for having a two-dimensional structure that leads to amazing properties. Many possibilities of applications for it have been studied. Our goal here is to make an analogy between the graphene and a magnetic system on a honeycomb lattice. In the magnetic system, we use the Heisenberg model to find the dispersion relations and understand the behavior of the spin waves of the same. While in graphene, we used the Tight-Binding model to find the energy spectrum. Underscoring we use a mathematically identical method for both and found that the curves for power modes have similar behaviors, respecting the particularities of each. Then, we calculate how these modes behave introduction of impurities in substitution sites on one or two lines of the crystal lattice.
32

Microstructural and superconducting properties of V doped MgB2 bulk and wires

Castillo, Oscar Eduardo. Schwartz, Justin, January 2004 (has links)
Thesis (M.S.)--Florida State University, 2004. / Advisor: Dr. Justin Schwartz, Florida State University, College of Engineering, Dept. of Mechanical Engineering. Title and description from dissertation home page (viewed June 17, 2004). Includes bibliographical references.
33

Epitaxial growth and characterization of cobalt-doped zinc oxide and cobalt-doped titanium dioxide for spintronic applications /

Tuan, Allan C. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 140-151).
34

Optical and luminescence properties of erbium, ytterbium and terbium doped in aluminum nitride

Corn, Tyler R. 24 July 2010 (has links)
Studies have been done to determine rare-earth elements’ optical and luminescent properties using wide bandgap nitride semiconductors as suitable hosts. Research done here will contribute to the information needed to further study rare-earth elements and their unique properties. Thin films of rare-earth elements erbium, terbium, ytterbium, and both erbium and ytterbium doped into AlN are studied by laser excitation. A 532 nm Nd: YAG green laser and 783nm crystal infrared laser are used for excitation in conjunction with a spectrometer to measure photoluminescence. With the 532 nm laser, AlN: Er emits peaks at 554 nm, 561 nm, and 1552 nm, AlN: Tb emits peaks at 549 nm and 562 nm, AlN: Yb emits peaks at 966 nm, and co-doped AlN: ErYb contains peaks including both AlN: Er and AlN: Yb. Energy transfer occurred from Er to Yb resulting in an increased magnitude and peak shift. The 783 nm laser gave peaks at 1563nm for AlN: Er, 1508 nm and 1533 nm for AlN: Tb, and 1567nm for AlN: ErYb. No detectable peaks were given for AlN: Yb. A peak shift was detected in comparison of AlN: Er and AlN: ErYb. A magnetic field of 1000 G was applied to AlN: ErYb resulting in an increase in intensity of the major peak at 561nm with a splitting, creating a secondary peak at 564.5 nm. Biomedical applications can be used from the high penetration ability of lower wavelength lasers and the use of a magnetic field, which is not harmful to the human body. Enhanced green emission in erbium can be useful in future optical, photonic, and electrical devices. / Department of Physics and Astronomy
35

Crystal-field splitting of Er³⁺ in ZnO and experimental observations

Cao, Kanyu. January 1997 (has links)
Thesis (M.S.)--Ohio University, August, 1997. / Title from PDF t.p.
36

Highly doped semiconductor plasmonic resonators for surface enhanced infrared absorption / Ingénierie de résonateurs plasmoniques à base de semi-conducteurs fortement dopés pour l’exaltation de l’absorption de molécules dans le moyen infrarouge

Barho, Franziska Barbara 29 November 2017 (has links)
La détection et l'identification des substances biologiques ou chimiques peuvent être accomplies par des biocapteurs. On exige des biocapteurs d'être simple et rapide à utiliser, d'avoir une taille réduite, et d'être suffisamment sensible afin de pouvoir détecter des molécules en petite quantité. Des dispositifs plasmoniques se sont révélés adaptés pour l'usage en tant qu'élément transducteur des biocapteurs. Les plasmon-polaritons de surface (SPP) sont des oscillations collectives du nuage électronique des métaux, couplées à des ondes électromagnétiques. Leur fréquence de résonance dépend de l'indice de réfraction de leur environnement diélectrique. Ceci permet de sonder de manière efficace la présence des molécules par la modification de l'indice de réfraction engendrée par celles-ci. La technique reposant sur ce principe s'appelle la détection par résonance des plasmons de surface (SPR sensing en anglais). De plus, les SPP confinent le champ électrique incident à des volumes sub-longueurs d'onde et l'exaltent ainsi. Les molécules qui se situent dans ces zones de forte exaltation du champ électrique interagissent plus efficacement avec la lumière incidente par l'intermédiaire du SPP, tel que leur section efficace de l'absorption infrarouge (IR) augmente. La spectroscopie IR est une technique standard d'identification de molécules en quantités suffisantes. Pour améliorer la sensibilité, la spectroscopie vibrationnelle d'absorption exaltée par la surface (SEIRA pour surface enhanced infrared absorption en anglais) est particulièrement bien adaptée.Alors que la plasmonique s'est principalement développée dans le visible via les métaux nobles, les semi-conducteurs III-V fortement dopés présentent une alternative intéressante pour la plasmonique dans le moyen IR. Leur fonction diélectrique ressemble à celle des métaux nobles dans le visible, mais décalée dans le moyen IR. Leur densité de charges moindre que celle de l'or permet de réduire considérablement leurs pertes. La spectroscopie SEIRA utilise des nanoantennes plasmoniques dont les résonances se situent dans l'IR pour couvrir la gamme spectrale des modes vibrationnels moléculaires. L'InAsSb fortement dopé accordé en maille sur un substrat en GaSb présente des propriétés plasmoniques au-delà de 5 µm de longueurs d'onde.Dans ce manuscrit, nous proposons des nanostructures en InAsSb:Si/GaSb pour développer un biocapteur utilisant les techniques de SEIRA et de SPR "sensing". Les nanostructures ont été réalisées soit par photolithographie et gravure chimique humide soit par lithographie interférentielle et gravure par plasma réactif. Les caractérisations optiques ont été effectuées par spectroscopie IR à transformée de Fourier. Des calculs numériques par la méthode des différences finies dans le domaine temporel (FDTD) ont permis d'étudier l'effet des paramètres géométriques sur la réponse optique des structures. Deux types de structure ont été proposés : des réseaux unidimensionnels ainsi que des réseaux bidimensionnels de nanoantennes rectangulaires supportant des résonances de plasmon de surface localisé (LSPR) dans les deux directions de polarisation de la lumière par rapport aux axes de la structure. Ce type de structures permet ainsi une réponse optique ayant des résonances dans deux bandes spectrales différentes. Les techniques de SPR "sensing" et de SEIRA ont été démontrées pour l'ensemble des structures uni- et bidimensionnelles. Différents types d'analytes comme les polymères et le benzaldéhyde vanilline ont servi de systèmes de tests pour les structures plasmoniques. Les sensibilités se situent entre 10² et 10^3 nm/RIU. Les facteurs d'augmentation des signaux vibrationnels obtenus sont compris dans une gamme de 1,2 à 5,7 et les facteurs d'exaltation ont été évalués autour de 10^3 à 10^4 pour les réseaux bidimensionnels de nanoantennes plasmoniques. / The detection and identification of biological and chemical substances can be performed with biosensors. Biosensors are required to be simple and rapid to use, small, and sensitive in order to detect minute amounts of analyte molecules. Plasmonic devices have proven their utility as biosensing transducers. Surface plasmon-polaritons (SPP), collective oscillations of the electron cloud in metallic media coupled to an electromagnetic wave, are sensitive to the refractive index of their environment, providing thus an efficient way to probe the presence of molecules by the refractive index modification. This technique is called surface plasmon resonance (SPR) sensing. Moreover, SPP confine the incident electric field to sub-wavelength dimensions and enhance the field strength. Molecules located in these so-called field hotspots interact more efficiently with incident light due to a coupling mechanism mediated by the SPP, so that their infrared (IR) absorption cross section is increased. While IR spectroscopy is a standard tool for molecular identification, it does not provide sufficient sensitivity for the detection of smallest quantities. Exploiting the surface enhanced IR absorption (SEIRA) due to the plasmonic enhancement enables the detection of small amounts of analyte.While surface plasmons were mainly discovered using noble metals such as gold and silver, nowadays other material systems are also considered which display complementary or improved properties compared to the standard materials in plasmonics, especially to enlarge the spectral range where plasmonic effects can be observed and exploited. Material science enables to tailor the dielectric function of a material and consequently to control the plasmonic properties. Highly doped III-V semiconductors constitute an alternative to gold and silver for mid-IR plasmonics, due to their dielectric function which resembles the one of the noble metals, but shifted to the mid-IR spectral range. Indeed, InAsSb in the IR is even less lossy than gold in the visible. SEIRA using plasmonic resonances spectrally tuned to molecular absorption lines, or resonant SEIRA, requires nanoantenna substrates displaying their resonances in the IR. Highly doped InAsSb grown lattice matched on GaSb substrates is an interesting material system for this task. InAsSb is plasmonic for wavelengths above approximately 5 µm.In this work, we propose InAsSb:Si/GaSb nanostructures as SEIRA and SPR substrates for an application in biosensing devices. InAsSb nanoantennas on GaSb substrates have been prepared using photolithography and wet chemical etching by a citric acid: hydrogen peroxyde solution or alternatively, by interferential lithography and reactive ion etching, especially to reduce the lattice parameter. An optical characterization of the structures was performed by FTIR spectroscopy, supported by numerical finite-difference time-domain (FDTD) calculations which were also applied to study the impact of geometrical parameters on the optical response. Notably, two types of structure designs were proposed: one-dimensional periodic gratings and two-dimensional arrays of rectangular shaped nanoantennas which provide localized surface plasmon resonances (LSPR) in both polarization directions contrary to the gratings and enable hence a dual band optical response. SPR sensing and SEIRA have successfully been demonstrated using both types of structures, with proof-of-concept analytes such as different polymers and the aromatic compound vanillin with absorption features at high IR wavelengths. A bulk sensitivity in the range of 10² to 10^3 nm/RIU was reached. The vibrational signals increased of factors ranging between approximately 1.2-5.7, and the SEIRA enhancement was estimated to be in the range of 10^3 to 10^4 for the rectangular nanoantenna arrays.
37

Supraconductivité et propriétés physiques du silicium très fortement dopé / Superconductive semiconductors

Grockowiak, Audrey 22 November 2012 (has links)
Cette thèse expérimentale explore les propriétés supraconductrices du silicium très fortement dopé, en particulier au bore, ainsi que les propriétés physiques anormale observées à plus hautes températures. La supraconductivité de Si:B est obtenue sous 1K, pour des dopages en bore supérieurs à la limite de solubilité du bore dans le silicium. Le Si:B est métallique à ces taux de dopage. Dans une première partie, nous exposons les différentes techniques expérimentales exploitées au cours de cette thèse. Nous expliquons les différentes techniques de dopage hors équilibre identifiées pour doper du silicium au-delà de la limite de solubilité, puis les techniques de caractérisation pour contrôler la qualité des couches dopées obtenues, ainsi que les méthodes de mesures aux très basses températures. Dans une deuxième partie, nous exposons les résultats obtenus sur la supraconductivité de Si:B en faisant varier dans un premier temps le taux de dopage en bore, puis en renouvelant l'étude à différentes épaisseurs de couche dopée. Nous montrons notamment que l'évolution de la Tc avec le couplage électron-phonon $lambda$ ne suit pas une loi de McMillan classique, mais plutôt une loi de puissance comme celle observée dans le cas du diamant supraconducteur. Nous montrons que ce résultat peut être expliqué dans le cadre d'un modèle d'un supraconducteur à deux couches de $lambda$ différents. En étudiant la dépendance en température et angulaire de Hc2, nous montrons que Si:B est un supraconducteur intrinsèquement de type I, mais qui devient de type II sous effet d'impuretés, et que la supraconductivité est à caractère bidimensionnel. Dans une troisième partie, nous présentons des comportements anormaux de certaines caractéristiques physiques mesurées dans certaines séries de Si:B, à partir de 50K et qui persistent jusqu'à au moins 400K. Nous présentons des mesures de magnétotransport, d'effet Hall et de mesures thermoélectriques qui présentent toutes des caractéristiques hautement non linéaires, et donc anormales pour un métal. L'origine de ces anomalies est toujours ouverte. Enfin, nous présentons quelques perspectives de travail, en particulier les premières mesures sur un échantillon avec une géométrie de type SQUID. / This experimental PhD thesis explore the superconductivity of heavily boron doped epilayers as well as some unusual properties observed at high temperatures. The superconductivity of Si:B is observed below 1K and triggered by boron content exceeding the solubility limit of boron into silicon. For such high boron contents, the silicon layers are metallic. In a first part, we develop the various experimental techniques used. We explain the principles of the out-of-equilibrium doping techniques required to doped beyond the solubility limit. We develop also on the characterisation techniques used to control the quality of the samples, as well as the low temperatures measurement techniques. In a second part, we show the results obtained on the superconductivity of Si:B, obtained forst by varying the boron content at a given layer thickness, and then as a function of the layer thickness. We show that the evolution of Tc with the electron-phonon coupling constant lambda doesn't follow the classical McMillan law, but rather a power of law as it was reported for superconducting diamond. We show that this result can be explained by a double layer model with dislocations resulting in two different lambda values for each sublayer. The study of the temperature and angular dependency of the Hc2 also show that Si:B is an intrinsic type I superconductor turned into type II with defect effects, and that the superconductivity is bidimensionnal. In a third part, we present the anomalous high temperature behaviour of some Si:B epilayers, starting from 50K and observed at least up to 400K. We present magnetotransport, Hall effect and thermoelectric measurements that all show a highly non linear behaviour, unusual for a metal. The origin of these anomalies is still an open question. We finally present some future perspectives, including the first measurements on a Si:B SQUID-like geometry.
38

Aproximação de Thomas-Fermi aplicada a estruturas semicondutoras delta-dopadas / The Thomas-Fermi theory of Delta-Si:GaAs superlattices

José Camilo Barbosa 03 September 1992 (has links)
Neste trabalho usamos a teoria de Thomas-Fermi para estudar as propriedades eletrônicas de semicondutores planarmente dopados, ou delta-dopados, com densidade de dopantes de moderada a alta. O principal objetivo do trabalho é a verificação de que esta teoria apresenta muito bons resultados com os do método auto-consistente na aproximação de Hartree quando aplicada a este tipo de problema. Verificamos que muitas situações físicas relacionadas a semicondutores delta-dopados podem ser descritas de uma maneira simples e com muito bons resultados. Estudamos o problema de um poço isolado e o problema da super-rede, comparando os resultados de Thomas-Fermi e Hartree. / In this work we have used the Thomas-Fermi theory to study the electronic properties of planar doped semiconductors, or delta-doping, with a moderate to high density of dopants. The main aim of this work is to verify that this theory gives very good results when compared with the self-consistent method in the Hartree aproximation. We have checked that many physical situations related to delta-doping can be described in a simple manner and also with very good results. We have studied the single delta problem and the superlattice problem and we have compared the Thomas-Fermi´s and Hartree´s results.
39

Raman and photoluminescence spectroscopy from magnesium doped, as grown, hydrogen implanted and annealed GaN

Maremane, Martin Koena 26 April 2005 (has links)
The presence of the hydrogen complex in Mg-doped GaN poses serious threats for the technological development of blue and ultraviolet light- emitting diodes and lasers. Since hydrogen is a difficult element to work with and it is incorporated into GaN through various mechanisms, a thorough understanding of hydrogen in GaN and other nitrides is essential to meet potential challenges by hydrogen. Most of the work done on the interaction of hydrogen implanted Mg-doped GaN deals mainly with passivation of the dopants and formation of the hydrogen complex with magnesium. However, the role of hydrogen implantation on the optical properties of Mg-doped GaN is not well understood. This study is mainly about optical properties of Mg-doped GaN and the effects of hydrogen on the Mg-doped GaN. Theoretically, group theory is used to determine the total number of symmetry allowed modes in GaN, Raman active modes and possible overtones. Experimentally, Raman and photoluminescence spectroscopy verify the theoretical results. / Dissertation (MSc)--University of Pretoria, 2006. / Physics / unrestricted
40

Donor electron states for silicon quantum computing : from single spins to scaled architectures

Pica, Giuseppe January 2015 (has links)
This PhD work took place in the framework of theoretical research aimed at implementation of quantum computing schemes and algorithms in solid state devices. The electron and nuclear spins of dopant atoms implanted in silicon crystals, that already lie at the core of commercial diodes and the photovoltaic industry, are able to store quantum information longer than anything else in the solid state. Controlled manipulations of silicon qubits depend on the ability to tune the nanoscopic donor electron state: we provide a complete theoretical picture that includes, within the insightful and analytic framework of effective mass theory, the effects of the non-trivial silicon conduction band and the different lattice distortions caused by the implantation of the donor species. Calibration of the multi-valley bulk theory to account for binding energies and electron-nuclear hyperfine couplings allows improved estimates of the exchange splittings between two neighbouring donors, that provide the simplest handle for tuning two-qubit operations. Further refinements to our approach lead to exceptional agreement with experimental measurements of Stark effects, where an external electric field is used to enable local single qubit manipulations within global driving fields: we set reliable thresholds on such gating speeds across all group V donors. Finally, we propose a scalable scheme for silicon quantum computing that relies on the coherent transfer of information from Si:Bi donors, that are established as excellent memory qubits, to surface quantum dots that are easier to manipulate, within a topological surface code which enables outstanding tolerance to errors. Analysis of the optimal working regimes and inclusion of the leading sources of decoherence allow us to set out a robust design of the basic building block of future realizations.

Page generated in 0.0546 seconds