• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effects of Sb and B Doping on the Conductive Properties of Tin Dioxide (Part B)

Gibson, Carey James 12 1900 (has links)
This is Part B of the Thesis. Here is the Link to Part A: http://hdl.handle.net/11375/17844 / <p> This report deals with the effects of various parameters on the resistance and the temperature coefficient of resistance (or the T.C.) of tin dioxide films doped with antimony and boron. The films were produced on cylindrical ceramic substrates by the hydrolysis of SnCl4 and SbCls in the presence of HCl and H3BO3. The T.C. was measured over the range of 25 to 150°C and averaged.</p> <p> Under normal conditions, the films were produced at 950°C with an antimony concentration of 0.457 molar % and a boron concentration of 2.73 molar %. Varying this firing temperature (from 800-1100°C) was found to have no effect on the resistance but increased the T.C. by 2 to 3 ppm/°C per degree change. Varying the antimony content from 0 to about 1 molar % was found to have little effect on resistance. The effect on T.C. was to increase it at lower Sb levels and then to decrease the T.C. as the level increased.</p> <p> Varying the boron content (0 to 4.46 molar %) was also found to have little effect on resistance. A decrease in T.C. with boron content was noted when only the boron was varied, but an increase in T.C. was found when HCl and H2O volumes were varied with the boron. The introduction of additional air into the system was found to have no effect.</p> <p> Film thicknesses were varied by controlling the chemical flowrates. Thinner films were found to have dramatically higher resistances and reduced T.C. values. It was observed that below a certain flowrate resistive failure occurred in the films. It was found in this study that within the statistical distribution of film values, those samples with above average resistance had below average T.C. values and vice-versa. Annealing in vacuum at 500°C was found to produce samples of reduced resistance and increased T.C. while the opposite was found with air annealed samples. Quickly cooled samples were found to be more stable.</p> / Thesis / Master of Engineering (MEngr)
2

DeterminaÃÃo eletroanalÃtica de nitrofurantoÃna (NFT) em fÃrmaco e em fluido biolÃgico utilizando eletrodo de diamante dopado com boro / Electroanalytical determination of nitrofurantoin (NFT) in drug and biological fluids using diamond electrode doped with boron

Rafael Ribeiro Portela 10 July 2008 (has links)
CoordenaÃÃo de AperfeiÃoamento de NÃvel Superior / Este trabalho apresenta o estudo da quantificaÃÃo de nitrofurantoina (NFT) utilizando os filmes de diamante dopados com boro como material eletrÃdico. Estudos preliminares utilizando voltametria cÃclica (VC) mostraram que o mecanismo de reduÃÃo da nitrofurantoina (NFT) envolve adsorÃÃo e à influenciado pelo pH, o nÃvel de dopagem de boro no eletrodo de diamante tambÃm influÃncia na reduÃÃo da NFT. Eletrodos de diamante com 5000, 10000 e 20000 ppm de dopagem de boro foram utilizados no estudo e os pHs: 2,0; 4,0; 6,0; 8,0 foram investigados para se obter a melhor condiÃÃo experimental. Os resultados experimentais obtidos em tampÃo Brinton-Robinson utilizando voltametria de onda quadrada mostraram apenas um processo totalmente irreversÃvel para a NFT em aproximadamente -0,35 V vs. Ag/AgCl/Cl- 3.0 mol L-1, o pico mostrou-se dependente do pH do meio e dos parÃmetros voltamÃtricos. As melhores respostas voltamÃtricas foram obtidas em tampÃo Brinton-Robinson pH 4 nas seguintes condiÃÃes experimentais: freqÃÃncia de 80 e 100 Hz, amplitude 40 e 60 mV; degrau de potencial de 4 mV, para os filmes com 10000 e 20000 ppm respectivamente. A partir dessas condiÃÃes, foram obtidas curvas analÃticas na faixa de concentraÃÃo de 4,97 x 10-7 mol L-1 a 56,6 x 10-7 mol L-1 e calculados os limites de detecÃÃo e quantificaÃÃo para a NFT que foi de 2,69 x 10-8 mol L-1 e 8,96 x 10-8 mol L-1 para o eletrodo com 20000 ppm de dopagem de boro. A aplicabilidade da metodologia foi avaliada em formulaÃÃo farmacÃutica e em urina humana. As porcentagens mÃdias de recuperaÃÃo de NFT foram iguais a: 95,52  2,78 e 96,78  1,88 para os filmes com 10000 e 20000 ppm, respectivamente. EDDB apresentaram bons resultados para quantificaÃÃo de NFT por reduÃÃo eletroquÃmica. / This work presents the electroanalytical study for the quantification of nitrofurantoin (NFT) using the boron doped diamond (BDD) films as electrodic material. Preliminary studies using cyclic voltammetry (CV) showed that the electrochemical reduction mechanism of the nitrofurantoin (NFT) involves adsorption and was influenced by pH and by the level of boron doping in the diamond film. BDD electrodes with 5000, 10000 and 20000 ppm of boron doping were used and the pH: 2.0, 4.0, 6.0, 8.0 were investigated to obtain the best experimental conditions. The experimental results obtained in Brinton-Robinson buffer using square wave voltammetry showed only a totally irreversible process for the NFT in approximately -0.35 V vs. Ag/AgCl/Cl- 3.0 mol L-1. The peak presents dependence with the pH and voltammetric parameters. The best voltammetric responses were obtained in Brinton-Robinson buffer at pH 4 with the following experimental conditions; frequency of 80 and 100 Hz, increment of 40 and 60 mV; potential step of 4 mV. In these conditions, the curves were obtained in the range of analytical concentration between 4.97 x 10-7 mol L-1 to 56.6 x 10-7 mol L-1 and calculated detection and quantification limits for the NFT which were of 8.96 x 10-8 mol L-1 and 2.69 x 10-8 mol L-1, respectively, for the electrodes with 20000 ppm of boron doping. The applicability of the methodology was evaluated in pharmaceutical formulation and human urine. The average percentages of recovery of NFT were: 95,52  2,75 and 96,78  1,88 for films with 10000 and 20000 ppm, respectively. EDDB showed good results for quantification of NFT by electrochemical reduction. The electrode with 20000 ppm of boron doping presents the best electroanalytical answer, showing the minor detection and quantification limited.

Page generated in 0.0726 seconds