• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multiple memory systems and extinction: the neurobiological basis of latent extinction

Gabriele, Amanda 15 May 2009 (has links)
Understanding the neural mechanisms underlying the extinction of maladaptive behaviors has become increasingly relevant. Extinction, or the reduction of a response due to lack of reinforcement, is believed to be “new learning.” Most extinction paradigms involve the performance of the previously reinforced response in the absence of reinforcement in order for extinction to occur. Conversely, latent extinction is a cognitive form of learning in which the previously rewarded response is not made during extinction training. However, until now the neurobiological basis of latent extinction has remained unknown. This dissertation has three aims to examine the neurobiological basis of latent extinction. Previous research has shown latent extinction to be impaired following hippocampal inactivation and the goal of Aim 1 was to examine other neural systems potentially involved in latent extinction through examination of brain structures such as the dorsal striatum, medial prefrontal cortex, and basolateral amygdala. Additionally, the neurochemical basis of latent extinction is unidentified; therefore Aim 2 addressed this question, specifically investigating the glutamatergic system through both NMDA receptor agonism and antagonism. Finally, understanding latent extinction may be useful for the extinction of drug addiction. Aim 3 was to examine some clinical implications for the extinction of drug addiction utilizing latent extinction following maze running for an oral cocaine reward. Reversible neural inactivation studies using the sodium channel blocker bupivacaine demonstrated a selective impairment of response extinction following dorsal striatum inactivation, but no effect on either latent or response extinction following medial prefrontal cortex or basolateral amygdala inactivation. These results, coupled with previous data from our lab demonstrate a double dissociation for extinction behavior. Further, peripheral NMDA receptor agonism with D-cyloserine enhances latent extinction and intra-hippocampal NMDA receptor antagonism with AP5 impairs latent extinction, identifying a role for the glutamatergic system in latent extinction. Finally, oral cocaine administration during acquisition selectively impairs latent extinction indicating that drug use affects the relive use of multiple memory systems during extinction. Overall, the multiple memory systems theory and latent extinction provide a framework with which to further understand the neural mechanisms of extinction behavior.
2

EFFECTS OF REPEATED ARIPIPRAZOLE TREATMENT ON THE cAMP AND AKT PATHWAYS IN THE DORSAL STRIATUM OF PREADOLESCENT AND ADULT RATS

Becker, Megan Leigh 01 December 2016 (has links)
The positive symptoms of schizophrenia primarily result from an excess of high affinity D2-like receptors (i.e. D2High receptors). First-generation antipsychotics, such as haloperidol, are D2-like antagonists that can cause severe extrapyramidal effects. Aripiprazole, a dopamine and serotonin partial agonist, has fewer side effects, making it tolerable for adults and children. Extrapyramidal effects (e.g. Parkinsonism, dystonia, and akathisia) are among the most problematic side effects produced by antipsychotic compounds, which likely result from an excess of D2-like receptors in the dorsal striatum. In order to examine the effects of repeated antipsychotic treatment on dopamine system functioning, this thesis compared the molecular effects of repeated haloperidol and aripiprazole administration on D2High receptors, as well as various indices of dopamine second messenger system functioning. Preadolescent and adult rats were pretreated with haloperidol or aripiprazole for 11 consecutive days. After either a 4- or 8-day drug abstinence period dorsal striatal tissue was extracted. [35S]GTPγS binding assays were conducted to assess the effects of repeated haloperidol and aripiprazole treatment on the efficacy and potency of D2-like receptors. PKA subunits and components of the Akt pathway were measured using Western Blots. Results showed that repeated treatment with haloperidol or aripiprazole did not significantly affect D2-like receptor efficacy or potency in young or adult rats. In both age groups, haloperidol significantly increased the expression of PKA-Cα, PKA-Cβ, and PKA-RII, but not p-PKA. Haloperidol also significantly increased PKA-Cβ and PKA-RII levels relative to aripiprazole. Repeated administration of haloperidol significantly increased p-GSK-3β levels in young and adult rats, but neither haloperidol nor aripiprazole significantly affected GSK-3β, Akt, or p-Akt levels. Overall, the results of this thesis indicate that repeated aripiprazole and haloperidol treatment differentially affects D2 signaling pathways in the dorsal striatum. Aripiprazole has less extreme or prolonged effects on D2 receptor signaling pathways than haloperidol, as evidenced by the lack of post-treatment upregulation in the cAMP and Akt pathways. Upregulation of D2-like receptors and, in turn, upregulation of proteins in the cAMP and Akt pathways may be partially responsible for the side effects induced by long-term antipsychotic treatment.
3

NICOTINE WITHDRAWAL AND DEFICITS IN COGNITIVE FLEXIBILITY: POSSIBLE TIES TO ABERRATIONS IN FRONTOSTRIATAL BDNF SIGNALING

Cole, Robert David January 2017 (has links)
Nicotine addiction continues to be a leading cause of preventable death worldwide. Despite the plethora of available treatments for smoking cessation, smoking relapse after attempts to quit remains high. It is possible that impairments in cognitive flexibility and underlying neurochemical circuits in nicotine addicts may foster maladaptive behaviors that affect individuals’ ability to refrain from taking drugs. Here we characterized the effects of spontaneous nicotine withdrawal on cognitive flexibility in mice using an operant strategy set-shifting task. Because frontostriatal circuits are critical for cognitive flexibility and brain-derived neurotrophic factor (BDNF) modulates glutamate plasticity, we also explored the effects of nicotine withdrawal on these neurochemical substrates. Adult male C57BL/6J mice were trained in an operant task that required the animals to switch from using a spatial response-driven strategy to a visual cue-based strategy to achieve rewards. Mice were exp / Psychology
4

Molecular Adaptations in the Endogenous Opioid System in Human and Rodent Brain

Hussain, Muhammad Zubair January 2013 (has links)
The aims of the thesis were to examine i) whether the endogenous opioid system (EOS) is lateralized in human brain areas involved in processing of emotions and pain; ii) whether EOS responses to unilateral brain injury depend on side of lesion, and iii) whether in human alcoholics, this system is involved in molecular adaptations in brain areas relevant for cognitive control of addictive behavior and habit formation. The main findings were that (1) opioid peptides but not opioid receptors and classic neurotransmitters are markedly lateralized in the anterior cingulate cortex involved in processing of  positive and negative emotions and affective component of pain. The region-specific lateralization of neuronal networks expressing opioid peptides may underlie in part lateralization of higher functions in the human brain including emotions and pain. (2) Analysis of the effects of traumatic brain injury (TBI) demonstrated predominant alteration of dynorphin levels in the hippocampus ipsilateral to the injury, while injury to the right hemisphere affected dynorphin levels in the striatum and frontal cortex to a greater extent than that to the left hemisphere. Thus, trauma reveals a lateralization in the mechanisms mediating the response of dynorphin expressing neuronal networks in the brain. These networks may differentially mediate effects of left or right brain injury on lateralized brain functions. (3) In human alcoholics, the enkephalin and dynorphin systems were found to be downregulated in the caudate nucleus and / or putamen that may underlie in part changes in goal directed behavior and formation of a compulsive habit in alcoholics. In contrast to downregulation in these areas, PDYN mRNA and dynorphins in dorsolateral prefrontal cortex, k-opioid receptor mRNA in orbitofrontal cortex, and dynorphins in hippocampus were upregulated in alcoholics. Activation of the k-opioid receptor by upregulated dynorphins may underlie in part neurocognitive dysfunctions relevant for addiction and disrupted inhibitory control. We conclude that the EOS exhibits region-specific lateralization in human brain and brain-area specific lateralized response after unilateral TBI in mice; and that the EOS is involved in adaptive processes associated with specific aspects of alcohol dependence.
5

Ontogeny- and Sex-Dependent Contributions of the Neuronal Nitric Oxide Synthase (nNOS) Gene to Rewarding and Psychomotor Stimulating Effects of Cocaine

Balda, Mara A. 10 June 2009 (has links)
Multiple interactions between dopamine (DA), glutamate, and nitric oxide (NO) in mesolimbic and corticostriatal circuits suggest that NO may play a critical role in cocaine-induced behavioral and neural plasticity. Clinical and preclinical studies have revealed that females and adolescents display unique vulnerabilities to the behavioral and neurochemical effects of cocaine as a result of sex-dependent and ontogeny-dependent differences in dopaminergic systems. Thus, my research objectives were to investigate the contributions of the neuronal nitric oxide synthase (nNOS) gene, ontogeny, and gender on the rewarding and sensitizing effects of cocaine. I found that nNOS significantly influences the rewarding aspects of cocaine in adolescent mice and adult male mice (i.e., major deficits in several phases of cocaine conditioned place preference (CPP) were detected in nNOS knockout (KO) adolescent mice and nNOS KO adult male mice). However, the contribution of nNOS was sex-dependent as CPP phases were normal in KO adult females. In contrast to CPP, I found a major ontogeny-dependent contribution of nNOS to the sensitizing effects of cocaine. Namely, while nNOS is essential for the development of behavioral sensitization in adult males, this type of behavioral plasticity develops independently of nNOS during adolescence. The contribution of nNOS was once again sex-dependent as behavioral sensitization was normal in adult KO females. Together, this line of investigation has revealed that the NO-signaling pathway has a) a sex-dependent role in the neuroplasticity underlying cocaine CPP and b) a sex-dependent and ontogeny-dependent influence on cocaine-induced behavioral sensitization. Stereological and western blot analysis revealed that a sensitizing regimen of cocaine resulted in an increase in nNOS and tyrosine hydroxylase (TH) immunoreactivity in the dorsal striatum (dST) of adult, but not adolescent, wild-type (WT) male mice. In the absence of nNOS, dopaminergic neurons in the ventral tegmental area (VTA) were severely reduced and cocaine caused a downregulation of dST TH suggesting that nitrergic levels modulate TH. Thus, the finding that nNOS is essential for the development of sensitization in adulthood, but not adolescence, together with the fact that cocaine upregulated nNOS and TH in the dST in adult, but not adolescent mice, strongly suggest that the nitrergic system underlies behavioral sensitization through modulation of the dopaminergic system in adulthood. These findings suggest different approaches in the clinical treatment of drug craving and drug-seeking behavior in adolescent and adult patients.
6

Réponses de peur et développement : ontogenèse des vocalisations ultrasoniques et du décours temporel de la réponse dans un conditionnement de peur à l’odeur chez le rat / Fear responses and development : ontogeny of ultrasonic vocalizations and temporal pattern of the response in olfactory fear conditioning in rats

Boulanger Bertolus, Julie 17 June 2016 (has links)
La peur est ce qui permet de réagir à un stimulus aversif par une réponse de défense adaptée à la situation. Elle peut être générée par un ensemble de stimuli naturellement aversifs ou par des stimuli ayant acquis une valeur aversive par apprentissage associatif. Cette thèse a pour but d'étudier les caractéristiques et modifications de la réponse de peur à ces deux types de stimuli au cours de l'ontogenèse. Les études présentées ici utilisent un conditionnement de peur à l'odeur chez le rat qui associe une odeur à un stimulus aversif et permet d'induire très rapidement et durablement des mémoires de peur à l'odeur. La réponse de défense peut alors être étudiée à la fois envers l'odeur apprise et envers le stimulus naturellement aversif. Nous montrons en particulier que la réponse de peur à l'odeur apprise présente un décours temporel corrélé à la durée de l'intervalle de temps entre l'odeur et le stimulus aversif, permettant d'affirmer que les animaux mémorisent et estiment le temps, et ce dès les premiers âges étudiés, avant la maturation des structures cérébrales classiquement impliquées dans cette mémoire temporelle. Par ailleurs, nous nous sommes intéressés aux vocalisations ultrasonores émises en réponse au stimulus aversif et à leur modification au cours de l'ontogenèse. Nous avons mis en évidence deux types de vocalisations chez le raton, dont les caractéristiques et critères d'induction laissent présager un rôle différentiel qui reste à explorer. L'ensemble de ces travaux soulignent que, même si les réponses de défense du rat changent au cours du développement, la capacité à produire ces réponses de manière temporellement adaptée est observée dès le plus jeune âge / Fear allows individuals to react to an aversive stimulus by a defense response adapted to the situation. It can be triggered by naturally aversive stimuli or in response to stimuli that acquired an aversive valence through associative learning. This thesis investigated the characteristics and modifications of fear responses to these two types of stimuli throughout ontogeny. The studies presented here used olfactory fear conditioning in rat, in which an odor is paired with an aversive event and allows to rapidly induce long lasting odor fear memories. Defense responses can then be studied both to the learned odor and to the naturally aversive stimulus. We showed in particular that fear response to the learned odor presents a temporal pattern correlated with the duration of the time interval between the odor and the aversive event, showing that rats can learn about time and they do so at the youngest ages studied here, before the maturation of the brain structures classically involved in interval timing. We also studied the ultrasonic vocalizations emitted in response to the aversive stimulus and their changes throughout ontogeny. We described two types of vocalizations in pups that differ in their characteristics and emission context, suggesting they could have different functions, which needs further exploration. These thesis findings highlight that although the rat’s defense responses changes through ontogeny, the ability to produce temporally adapted responses occurs from the youngest age
7

Translational potential of the touchscreen-based methodology to assess cognitive abilities in mice / Potentiel translationnel d'une méthodologie basée sur des écrans tactiles pour évaluer les capacités cognitives chez la souris

Delotterie, David 24 September 2014 (has links)
Ce travail visait à évaluer le potentiel d’une méthodologie innovante récemment adaptée à la Souris sur la base de tests neuropsychologiques utilisés en clinique humaine. Après optimisation de 3 tâches (PAL, VMCL, PVD) ciblant différentes fonctions cognitives chez l’animal, nos études ont établi : (1) l’existence possible d’interférences proactives lors d’apprentissages consécutifs ; (2) l’absence de déficit d’acquisition chez les souris de la lignée Tg2576 (modèle transgénique de la maladie d’Alzheimer), quelle que soit l’étendue de la charge amyloïde ; (3) l’implication spécifique du striatum dorsal lors de l’acquisition des tâches de VMCL et PAL, et celle de l’hippocampe lors du rappel de cette dernière tâche. Ces derniers résultats suggèrent qu’en dépit des efforts déployés pour s’assurer du caractère translationnel d’une tâche cognitive dans le paradigme du touchscreen, certaines adaptations inhérentes à chaque espèce influencent profondément les bases neurobiologiques associées. / This thesis work aimed to specify the potential of an innovative methodology latterly adapted in mice from neuropsychological tasks used in Humans. After the optimization of 3 assays (PAL, VMCL, PVD) taxing various cognitive functions in animals, different behavioral studies have gradually revealed: (1) the putative existence of proactive interferences over consecutive learnings in touchscreen tasks; (2) no acquisition deficit in Tg2576 mice (a transgenic model of Alzheimer’s Disease) in these paradigms, whatever the amyloid load considered; (3) the specific involvement of the dorsal striatum during the acquisition of VMCL and PAL tasks and the key role of the hippocampus during the recall of the latter task. As exemplified by the PAL task, our results suggest that despite momentous efforts in order to ensure the translational feature of touchscreen cognitive tasks, certain adaptations inherent to each species deeply influence the nature of underlying neurobiological substrates.

Page generated in 0.0645 seconds