• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ANALYSIS AND CONTROL OF BIFURCATIONS IN A DOUBLE PENDULUM

JAFRI, FIROZ ALI 17 April 2003 (has links)
No description available.
2

Application of Product Design Concepts and Hybrid System Dynamics to Demonstrate Zeno Behavior and Zeno Periodic Orbits in a Physical Double Pendulum Setup

Kothapalli, Bhargav 2011 May 1900 (has links)
This thesis aims to explain how the concepts of functional modeling are implemented in the development and validation of real-world hybrid dynamic systems. I also discuss how control theory is integrated with the design process in order to understand the significance of periodic orbits on a simple dynamic system. Two hybrid system applications with different levels of complexity will be considered in this thesis – an anthropomorphic Bipedal walking robot and a Double Pendulum with a mechanical stop. The primary objectives of this project are to demonstrate the phenomena of Zeno and zeno periodic orbits in hybrid dynamic systems involving impacts. Initially, I describe the salient features of the product design procedure and then explain the significance of functional modeling as a part of this process. We then discuss hybrid dynamic systems and the occurrence of Zeno behavior in their mathematical form. Also, the necessary conditions for existence of Zeno and zeno equilibrium points are provided. Then the theory of completed Lagrangian hybrid systems is explained in detail. We then examine the two hybrid dynamic systems being considered for this project. Prior research undertaken on bipedal walking is explored to understand their design and achievement of stable walking gaits with appropriate actuation mechanisms. Based on this insight, a suitable design procedure is employed to develop the bipedal robot model. The desired actuation mechanisms for all the configurations considered for this model as well as the challenges faced in employing optimal actuation will be discussed. However, due to the high level of complexity of the bipedal robot model, a simpler hybrid dynamic system is considered to simplify fabrication and control of the model. This is the motivation behind designing and building the Double Pendulum model with a mechanical stop in an attempt to observe zeno behavior in this system. We begin by formally demonstrating that the “constrained” double pendulum model displays Zeno behavior and complete this Zeno hybrid system to allow for solutions to be carried past the Zeno point. The end result is periods of unconstrained and constrained motions in the pendulum, with transitions to the constrained motion occurring at the Zeno point. We then consider the development of a real physical pendulum with a mechanical stop and introduce non-plastic impacts. Later, we verify through experimentation that Zeno behavior provides an accurate description of the behavior of the physical system. This provides evidence to substantiate the claim that Zeno behavior, while it does not technically occur in reality, provides an accurate method for predicting the behavior of systems undergoing impacts and that the theory developed to understand Zeno behavior can be applied to better understand these systems.
3

Tip-over stability analysis for mobile boom cranes with single- and double-pendulum payloads

Fujioka, Daichi 08 July 2010 (has links)
This thesis investigated a tip-over stability of mobile boom cranes with swinging payloads. Base and crane motion presents a tip-over problem. Attaching complex payloads further complicates the problem. They study began with a single-pendulum payload to analyze a tip-over stability characteristics under different conditions. A simple tip-over prediction model was developed with a goal of limiting a computational cost to a minimum. The stability was characterized by a tip-over stability margin method. The crane's tip-over stability was also represented by the maximum possible payload it can carry throughout the workspace. In a static stability analysis, mobile boom crane was assumed to be stationary, thus with no payload swing. The study provided basic understanding on the relationship between tip-over stability and boom configuration. In a pseudo-dynamic stability analysis, the method incorporated payload swing into the analysis by adding estimated maximum payload swing due to motions. To estimate the angles, differential equations of motions of payload swings were derived. The thesis extended the study to a double-pendulum payload. The maximum swing angles estimated in the single-pendulum case were directly applied to the double-pendulum case. To validate the analytical methods, a full dynamic multi-body simulation model of a mobile boom crane was developed. The predictions from the previous analysis were verified by the simulation results. The prediction model and the analytical methods in the thesis provide a significant tool for practical application of tip-over stability analysis on mobile boom cranes. The experimental results increase the confidence of the study's accuracy.
4

Návrh automatického pohonu kostelních zvonů / Design of automatic drive for church bells

Zajíc, Jiří January 2013 (has links)
The Diploma thesis describes the design, manufacture and testing of a universal automation machine for church bells. The research section summarizes the bell, way of use and properties. The drives and their starting and power switching characteristic are analyzed. The chain drive based on the selected engine and the whole assembly is designed and tested by using PLC. Unique controller based on a modular design was designed. Sensors based on magnetic rotary encoder were also created for this unit. The entire circuit was tested on three evangelical church bells in the town Klobouky u Brna.

Page generated in 0.0534 seconds