• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of the roX RNAs and the RNA Helicase MLE in Dosage Compensation in Drosophila melanogaster

Hendricks, Dianne Grayce January 2009 (has links)
<p>In Drosophila melanogaster, where males are XY and females are XX, dosage compensation is acheived by approximately two-fold upregulation of transcription of the single male X chromosome. This upregulation is mediated by the dosage compensation complex (DCC), which is assembled in a sequential manner on the male X chromosome and is composed of the two noncoding roX (RNA on the X) RNAs and at least five proteins, including the RNA helicase Maleless (MLE). MLE contains two highly conserved double stranded RNA binding domains (DRBDs) at the N terminus. We investigated the roles of the roX RNAs and MLE helicase through experiments using classical genetic methods to generate and analyze the effects of mutants and mutant transgenes, immunolocalization experiments to study MSL protein and roX RNA to chromosomes. For the first time in vivo, we demonstrate that MLE associates with double stranded RNA in a sequence non-specific manner that is independent of other DCC components. Importantly, we find that the DSRBDs of MLE are essential for dosage compensation but are not required for MLE localization to the male X chromosome. We propose that although the DSRBDs are not essential for ds RNA binding, they may act synergistically with other domains of MLE or other MSLs to associate with RNA in vivo. We propose that a MLE/ roX RNA association involving secondary structure formed by the roX RNAs may be involved in the assembly, stabilization, or function of the DCC.</p> / Dissertation
2

Mutagenesis and functional characterisation of toxin HicA from the HicBA TA system in Burkholderia pseudomallei

Bare, Harriet Leah January 2016 (has links)
Four type II toxin-antitoxin (TA) systems were previously identified in Burkholderia pseudomallei K96243. Type II TA toxins are able to induce cell growth arrest or death by interfering with key processes within the organism. BPSS0390-0391 is one of the TA systems previously identified and has homology to hicBA system in Acinetobacter baumannii. B. pseudomallei HicA is able to cause a reduction in the number of culturable cells after expression in E. coli. This study aimed to characterise B. pseudomallei HicA in three ways: by inducing expression of HicA in bacterial species other than E. coli, by identifying amino acids in HicA involved in toxicity and neutralisation by the antitoxin HicB and by examining the interaction of HicA with other TA antitoxins identified within B. pseudomallei genome. A broad host range plasmid encoding BPSS0390 was transformed into a range of Gram negative bacteria including Yersinia pseudotuberculosis IP32953, Vibrio vulnificus E64MW, Salmonella enterica serovar Typhimurium SL1344 and Burkholderia thailandensis E264. Expression of BPSS0390 was toxic in all bacterial species tested, despite the presence of antitoxin BPSS0391 homologues in some species. Unregulated expression in E. coli resulted in the appearance of escape mutants encoding non-toxic variants of HicA. An alanine scanning mutagenesis study of HicA identified 20 mutants where toxicity was abolished despite high levels of expression, but identified no mutants that affected TA complex formation. Finally an existing co-expression assay was modified to examine interactions between HicA and other type II TA antitoxins in B. pseudomallei. The assay revealed no interaction between HicA and non-cognate antitoxins and clarified the role of IPTG as an inhibitor of PBAD promoter on the arabinose operon.
3

Étude de l’activité de Staufen1 dans la régulation traductionnelle de certains ARNm

Dugré-Brisson, Samuel 12 1900 (has links)
Le transport et la traduction localisée des ARN messagers sont observés chez plusieurs organismes et sont requis pour de multiples phénomènes tels la mémoire, la division cellulaire asymétrique et l’établissement des axes durant le développement. Staufen, une protéine liant l’ARN double-brin, a été identifié dans un premier temps chez la mouche à fruits Drosophila melanogaster. Il a été montré, chez cet organisme, que Staufen est requis pour la localisation des messagers bicoid et oskar aux pôles antérieur et postérieur de l’ovocyte, respectivement. Également, Staufen est requis afin que la répression traductionnelle du messager oskar soit levée une fois qu’il est bien localisé. Chez les mammifères, Stau1 est une protéine ubiquiste qui est présente dans des complexes prenant la forme de granules dans les dendrites des neurones. Également, Stau1 peut interagir de façon indépendante de l’ARN avec le ribosome et cofractionner tant avec la sous-unité 40S qu’avec la sous-unité 60S du ribosome dans un gradient de saccharose. L’implication de Stau1 dans un mécanisme permettant la dérépression traductionnelle de certains ARNm chez les mammifères était donc une voie d’investigation intéressante. Nous avons donc décidé de vérifier si Stau1 mammifère avait la capacité de stimuler la traduction d’un ARNm cellulaire via un mécanisme régulé. Au moment où cette thèse a été entreprise, aucun ARNm cellulaire lié par Stau1 n’avait été identifié chez les mammifères. Des structures d’ARN double-brin ont donc été employées afin de réprimer la traduction d’un ARNm rapporteur. C’est ainsi que nous avons montré que Stau1 peut stimuler la traduction d’un ARNm lorsqu’il lie celui-ci dans sa région 5’ non-traduite. Par la suite, en employant des micropuces d’ADN, nous avons identifié des messagers cellulaires dont la distribution dans les polysomes lourds est modifiée par Stau1. En effet, un groupe de messagers est enrichi dans les polysomes lourds suite à une surexpression de Stau1, ce qui suggère que Stau1 stimule la traduction de cette population d’ARNm. Afin d’identifier un mécanisme potentiel de régulation de l’activité traductionnelle de Stau1, nous nous sommes intéressés à la capacité d’auto-association de cette protéine. Nous avons montré que Stau1, tout comme plusieurs protéines liant l’ARN double-brin, est en mesure de s’associer à lui-même, et ce, d’une façon indépendante de l’ARN. Nous avons identifié les déterminants impliqués mettant ainsi au jour un nouveau mécanisme pouvant influencer les activités cellulaires de Stau1. Les résultats présentés dans cette thèse suggèrent donc que Stau1 est en mesure de stimuler la traduction d’une sous-population précise d’ARN messagers au sein de la cellule permettant ainsi de jeter un regard nouveau sur l’implication de cette protéine dans divers phénomènes au sein de l’organisme. / Transport and local translation of RNA are found in several organisms and are required for multiple phenomena such as memory, asymmetric cell division and establishment of the axis during development. Staufen, a double-stranded RNA binding protein, was first identified in Drosophila melanogaster. In the fruitfly, it was shown that Staufen is required for the proper localization of the bicoid and oskar transcripts to the anterior and posterior ends of the oocyte, respectively. It was also found that Staufen is important for the translational derepression of oskar once it is adequately localized. In mammals, Stau1 is a ubiquitous protein found in granules in the dendrites of neurons. Also, Stau1 can bind the ribosome in a RNA-independent manner and cofractionates with both ribosomal subunits in a sucrose gradient. The implication of Stau1 in a mechanism allowing translational derepression of certain RNAs in mammals was therefore an interesting path to explore. Accordingly, we decided to verify if mammalian Stau1 had the capacity to stimulate the translation of cellular RNAs through a regulated mechanism. When this thesis was initiated, no cellular RNA target of Stau1 had been identified in mammals. Therefore, double-stranded RNA structures were used to repress the translation of a reporter mRNA. With this model, we showed that Stau1 can stimulate the translation of a transcript when it is bound to its 5’ UTR. With the use of DNA microarrays, we identified cellular mRNAs which distribution in heavy polysomes was altered by Stau1. When Stau1 is overexpressed, this group of mRNAs is enriched heavy polysomes, suggesting a translational stimulation of this population by Stau1. To identify a regulatory mechanism that could influence Stau1’s translational activity, we studied the self-association capacity of this protein. We showed that Stau1, like several double-stranded RNA binding proteins, can self-associate in a RNA-independent manner. We have identified the determinants required for this interaction that as the potential to be important for the regulation of the cellular activities of Stau1. The results presented in this thesis suggest that Stau1 can stimulate the translation of a specific subset of mRNAs in the cell, letting us look at Stau1’s implication in different processes from a new point of view.
4

Étude de l’activité de Staufen1 dans la régulation traductionnelle de certains ARNm

Dugré-Brisson, Samuel 12 1900 (has links)
Le transport et la traduction localisée des ARN messagers sont observés chez plusieurs organismes et sont requis pour de multiples phénomènes tels la mémoire, la division cellulaire asymétrique et l’établissement des axes durant le développement. Staufen, une protéine liant l’ARN double-brin, a été identifié dans un premier temps chez la mouche à fruits Drosophila melanogaster. Il a été montré, chez cet organisme, que Staufen est requis pour la localisation des messagers bicoid et oskar aux pôles antérieur et postérieur de l’ovocyte, respectivement. Également, Staufen est requis afin que la répression traductionnelle du messager oskar soit levée une fois qu’il est bien localisé. Chez les mammifères, Stau1 est une protéine ubiquiste qui est présente dans des complexes prenant la forme de granules dans les dendrites des neurones. Également, Stau1 peut interagir de façon indépendante de l’ARN avec le ribosome et cofractionner tant avec la sous-unité 40S qu’avec la sous-unité 60S du ribosome dans un gradient de saccharose. L’implication de Stau1 dans un mécanisme permettant la dérépression traductionnelle de certains ARNm chez les mammifères était donc une voie d’investigation intéressante. Nous avons donc décidé de vérifier si Stau1 mammifère avait la capacité de stimuler la traduction d’un ARNm cellulaire via un mécanisme régulé. Au moment où cette thèse a été entreprise, aucun ARNm cellulaire lié par Stau1 n’avait été identifié chez les mammifères. Des structures d’ARN double-brin ont donc été employées afin de réprimer la traduction d’un ARNm rapporteur. C’est ainsi que nous avons montré que Stau1 peut stimuler la traduction d’un ARNm lorsqu’il lie celui-ci dans sa région 5’ non-traduite. Par la suite, en employant des micropuces d’ADN, nous avons identifié des messagers cellulaires dont la distribution dans les polysomes lourds est modifiée par Stau1. En effet, un groupe de messagers est enrichi dans les polysomes lourds suite à une surexpression de Stau1, ce qui suggère que Stau1 stimule la traduction de cette population d’ARNm. Afin d’identifier un mécanisme potentiel de régulation de l’activité traductionnelle de Stau1, nous nous sommes intéressés à la capacité d’auto-association de cette protéine. Nous avons montré que Stau1, tout comme plusieurs protéines liant l’ARN double-brin, est en mesure de s’associer à lui-même, et ce, d’une façon indépendante de l’ARN. Nous avons identifié les déterminants impliqués mettant ainsi au jour un nouveau mécanisme pouvant influencer les activités cellulaires de Stau1. Les résultats présentés dans cette thèse suggèrent donc que Stau1 est en mesure de stimuler la traduction d’une sous-population précise d’ARN messagers au sein de la cellule permettant ainsi de jeter un regard nouveau sur l’implication de cette protéine dans divers phénomènes au sein de l’organisme. / Transport and local translation of RNA are found in several organisms and are required for multiple phenomena such as memory, asymmetric cell division and establishment of the axis during development. Staufen, a double-stranded RNA binding protein, was first identified in Drosophila melanogaster. In the fruitfly, it was shown that Staufen is required for the proper localization of the bicoid and oskar transcripts to the anterior and posterior ends of the oocyte, respectively. It was also found that Staufen is important for the translational derepression of oskar once it is adequately localized. In mammals, Stau1 is a ubiquitous protein found in granules in the dendrites of neurons. Also, Stau1 can bind the ribosome in a RNA-independent manner and cofractionates with both ribosomal subunits in a sucrose gradient. The implication of Stau1 in a mechanism allowing translational derepression of certain RNAs in mammals was therefore an interesting path to explore. Accordingly, we decided to verify if mammalian Stau1 had the capacity to stimulate the translation of cellular RNAs through a regulated mechanism. When this thesis was initiated, no cellular RNA target of Stau1 had been identified in mammals. Therefore, double-stranded RNA structures were used to repress the translation of a reporter mRNA. With this model, we showed that Stau1 can stimulate the translation of a transcript when it is bound to its 5’ UTR. With the use of DNA microarrays, we identified cellular mRNAs which distribution in heavy polysomes was altered by Stau1. When Stau1 is overexpressed, this group of mRNAs is enriched heavy polysomes, suggesting a translational stimulation of this population by Stau1. To identify a regulatory mechanism that could influence Stau1’s translational activity, we studied the self-association capacity of this protein. We showed that Stau1, like several double-stranded RNA binding proteins, can self-associate in a RNA-independent manner. We have identified the determinants required for this interaction that as the potential to be important for the regulation of the cellular activities of Stau1. The results presented in this thesis suggest that Stau1 can stimulate the translation of a specific subset of mRNAs in the cell, letting us look at Stau1’s implication in different processes from a new point of view.

Page generated in 0.4637 seconds