• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 45
  • 45
  • 16
  • 14
  • 12
  • 9
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Flow resistance and associated backwater effect due to spur dikes in open channels

Azinfar, Hossein 01 March 2010 (has links)
A spur dike is a hydraulic structure built on the bank of a river at some angle to the main flow direction. A series of spur dikes in a row may also be placed on one side or both sides of a river to form a spur dike field. Spur dikes are used for two main purposes, namely river training and bank protection. For river training, spur dikes may be used to provide a desirable path for navigation purposes or to direct the flow to a desirable point such as a water intake. For bank protection, spur dikes may be used to deflect flow away from a riverbank and thus protect it from erosion. It has also been observed that spur dikes provide a desirable environment for aquatic habitat. Despite the fact that spur dikes are useful hydraulic structures, they have been found to increase the flow resistance in rivers and hence increase the flow stage. The present study focuses on the quantification of the flow resistance and associated flow stage increase due to a single spur dike and also that of a spur dike field. Increased flow stage is referred to herein as a backwater effect.<p> In the first stage of the study, the flow resistance due to a single spur dike, expressed as a drag force exerted on the flow in an open channel, was studied and quantified. The work was carried out in a rigid bed flume, with the model spur dike being simulated using various sizes of a two-dimensional (2-D) rectangular plate. Several discharge conditions were studied. The drag force exerted by the spur dike for both submerged and unsubmerged flow conditions was determined directly from measurements made using a specially designed apparatus and also by application of the momentum equation to a control volume that included the spur dike. It was found that the unit drag force (i.e., drag force per unit area of dike) of an unsubmerged spur dike increases more rapidly with an increase in the discharge when compared with that of a submerged spur dike. The results also showed that an increase in the blockage of the open channel cross-section due to the spur dike is the main parameter responsible for an increase in the spur dike drag coefficient, hence the associated flow resistance and backwater effect. Based on these findings, relationships were developed for estimating the backwater effect due to a single spur dike in an open channel.<p> In the second stage of the study, the flow resistance due to a spur dike field expressed as a drag force exerted on the flow was quantified and subsequently related to the backwater effect. The work was carried out in a rigid bed flume, with the model spur dikes simulated using 2-D, rectangular plates placed along one side of the flume. For various discharges, the drag force of each individual spur dike in the spur dike field was measured directly using a specially-designed apparatus. For these tests, both submerged and unsubmerged conditions were evaluated along with various numbers of spur dikes and various relative spacings between the spur dikes throughout the field. It was concluded that the configuration of a spur dike field in terms of the number of spur dikes and relative spacing between the spur dikes has a substantial impact on the drag force and hence the flow resistance and backwater effect of a spur dike field. The most upstream spur dike had the highest drag force amongst the spur dikes in the field, and it acted as a shield to decrease the drag force exerted by the downstream spur dikes. From the experiments on the submerged spur dikes, it was observed that the jet flow over the spur dikes has an important effect on the flow structure and hence the flow resistance.<p> In the third stage of the study, the flow field within the vicinity of a single submerged spur dike was modeled using the three-dimensional (3-D) computational fluid dynamic (CFD) software FLUENT. Application of the software required solution of the 3-D Reynolds-averaged Navier-Stokes equations wherein the Reynolds stresses were resolved using the RNG ê-å turbulence model. One discharge condition was evaluated in a smooth, rectangular channel for two conditions, including uniform flow conditions without the spur dike in place and one with the spur dike in place. The CFD model was evaluated based on some experimental data acquired from the physical model. It was found that the CFD model could satisfactorily predict the flow resistance and water surface profile adjacent to the spur dike, including the resulting backwater effect. Furthermore, the CFD model gave a good prediction of the velocity field except for the area behind the spur dike where the effects of diving jet flow over the spur dike was not properly modeled.
12

Unloading using auger tool and foam and experimental identification of liquid loading of low rate natural gas wells

Bose, Rana 17 September 2007 (has links)
Low-pressure, low-producing natural gas wells commonly encounter liquid loading during production. Because of the decline in the reservoir pressure and the flow capacity, wells can fall below terminal velocity. Identifying and predicting the onset of liquid loading allows the operators to plan and prepare for combating the liquid loading hence saving valuable reserves and downtime. The present industrial applications of artificial lift, wellhead pressure reduction by compressor installation at the wellheads and reduction in tubing size are costly and often intermittent. The thesis examines the above aspects to generate a workflow for identifying and predicting the liquid loading conclusively and also assessing the application of Auger Tool and foam combination towards achieving a cost effective and more efficient solution for liquid unloading. In chapters I-IV, I describe the process of using production surveillance software of Halliburton Digital Consulting Services, named DSS (Dynamic Surveillance Software), to create a workflow of identifying the liquid loaded wells based on well data on daily basis for field personnel and engineers. This workflow also decides the most cost effective solution to handle it. Moreover, it can perform decline analysis to predict the conditions of liquid loading. In chapters V-VIII of the thesis, I describe the effort of handling the problem of liquid loading in a cost effective manner by introduction of an inexpensive Auger Tool in the bottomhole assembly and using WhiteMax surfactant soapstick from J&J Solutions. Four different combinations of well completion and fluid were tested for performance in respect to liquid hold up, pressure loss in the tubing, unloading efficiency and critical flow requirement. The test facilities and instruments, along with the operational methods, are discussed in chapter VI. Except for the reduction of the operational envelope with the inclusion of Auger Tool, the performance improved with the insertion of Auger Tool. The best combination of Auger and foam system could be a result of flow modification by the Auger Tool caused by reduced pressure loss and increase in drag coefficient and also by reduced density and surface tension of foam.
13

Effect of Laminar Shear on the Aggregate Structure of Flocculant-dosed Kaolinite Slurries

Vaezi Ghobaeiyeh, Farid Unknown Date
No description available.
14

Investigation Of Air Bubble Motion In Counter-current Water Flow Conditions

Bezdegumeli, Ugur 01 January 2003 (has links) (PDF)
In this thesis study, air bubble motion in counter-current water flow conditions in a vertical pipe is investigated experimentally. For this purpose, a test set-up was designed and constructed. Images of motions of single bubbles, having different diameters in the range of 3.0-4.8 mm, generated by specially designed bubble injectors were recorded by using a monochrome camera, an image capture card and a PC. Recorded video images were processed to obtain the necessary data for the The purpose of the study is to determine variation as a function of the equivalent bubble diameter, water flow velocity and related dimensionless numbers / Reynolds, Re / E&ouml / tv&ouml / s, Eo / and Weber, We, and is to investigate the bubble shapes and bubble travel paths. Bubble behaviour was investigated at six different counter-current water flow velocities (6.5 cm/s, 7.9 cm/s, 10.5 cm/s, 12.9 cm/s, 15.4 cm/s, and 18.2 cm/s) in addition to stagnant water condition which is taken as the reference case. The direction of the bubble motion is upwards and the direction of the water flow is downwards (i.e. counter-current). Distilled water was used in the experiments. The results of this thesis study for the stagnant water condition have shown good consistency with the previous theoretical and experimental studies found in the literature. For the studied range of bubble diameters, it is observed that the bubble average relative velocity for a certain bubble diameter is less under counter-current water flow conditions than that under stagnant water condition and the drag coefficient values for a certain bubble diameter is higher under counter-current water flow conditions than those under stagnant water condition.
15

Numerical Modeling of Extreme Flow Impacts on Structures

Asadollahi Shahbaboli, Nora January 2016 (has links)
Recent tsunami disasters caused devastating damages to well-engineered coastal infrastructures. In fact, the current design guidelines are not able to provide realistic estimations of tsunami loads in order to design structures to withstand tsunamis. Tsunami hydrodynamic forces are estimated using the drag coefficient. This coefficient is traditionally calculated based on a steady flow analogy. However, tsunami bores behave like unsteady flows. The present work aims at investigating the tsunami forces for different structure geometries to provide realistic guidelines to estimate drag coefficients considering unsteady flows. In the present paper, the dam-break approach is used to investigate the tsunami-like bore interaction with structures. A three-dimensional multiphase numerical model is implemented to study the tsunami induced forces on rectangular shape structures with various aspect ratios (width/depth) and orientations. The numerical model results are validated using measured forces and bore surface elevations of the physical experiments. A scaled-up domain is modeled in order to eliminate the effects of domain sidewalls in the simulation results. The drag coefficient relations with structure geometries and bore depths are provided. The obtained hydrodynamic forces and drag coefficients are compared with existing data in the literature and design codes. For the second topic, a multi-phase three-dimensional numerical reproduction of a large scale laboratory experiment of tsunami-like bores interaction with a surface-piercing circular column is presented. The numerical simulation is conducted in OpenFOAM. The dam-break mechanism is implemented in order to generate tsunami-like bores. The numerical model is validated using the experimental results performed at Canadian Hydraulics Center of the National Research Council (NRC-CHC) in Ottawa. The unsteady Reynolds Averaged Navier-Stokes equations (RANS) are used in order to treat the turbulence effects. The Shear Stress Transport (SST) k-ω turbulence model showed high level of accuracy in replication of the bore-structure interaction. Further, a scaled-up domain is used to investigate the influence of the bed condition in terms of various downstream depths and roughness. Finally, a broad investigation on the bore propagation characteristics is performed. The resulting stream-wise forces exerted on the structural column as well as the bore velocity are compared and analyzed for smooth, rough, dry and wet beds with varying depths.
16

Flight and Stability of a Laser Inertial Fusion Energy Target in the Drift Region Between Injection and the Reaction Chamber with Computational Fluid Dynamics

Mitori, Tiffany Leilani 01 March 2014 (has links) (PDF)
A Laser Inertial Fusion Energy (LIFE) target’s flight through a low Reynolds number and high Mach number regime was analyzed with computational fluid dynamics software. This regime consisted of xenon gas at 1,050 K and approximately 6,670 Pa. Simulations with similar flow conditions were performed over a sphere and compared with experimental data and published correlations for validation purposes. Transient considerations of the developing flow around the target were explored. Simulations of the target at different velocities were used to determine correlations for the drag coefficient and Nusselt number as functions of the Reynolds number. Simulations with different target angles of attack were used to determine the aerodynamic coefficients of drag, lift, Magnus moment, and overturning moment as well as target stability. The drag force, lift force, and overturning moment changed minimally with spin. Above an angle of attack of 15°, the overturning moment would be destabilizing. At angles of attack less than 15°, the overturning moment would tend to decrease the target’s angle of attack, indicating the lack of a need for spin for stability at these small angles. This stabilizing moment would cause the target to move in a mildly damped oscillation about the axis parallel to the free-stream velocity vector through the target’s center of gravity.
17

Particle-fluid interactions under heterogeneous reactions

Jayawickrama, Thamali Rajika January 2020 (has links)
Particle-laden flows involve in many energy and industrial processes within a wide scale range. Solid fuel combustion and gasication, drying and catalytic cracking are some of the examples. It is vital to have a better understanding of the phenomena inside the reactors involving in particle-laden flows for process improvements and design. Computational fluid dynamics (CFD) can be a robust tool for these studies with its advantage over experimental methods. The large variation of length scales (101- 10-9 m) and time scales (days-microseconds) is a barrier to execute detailed simulations for large scale reactors. Current state-of-the-art is to use models to bridge the gap between small scales and large scales. Therefore, the accuracy of the models is key to better predictions in large scale simulations.    Particle-laden flows have complexities due to many reasons. One of the main challenge is to describe how the particle-fluid interaction varies when the particles are reacting. Particle and the fluid interact through mass, momentum and heat exchange. Mass, momentum and heat exchange is presented by the Sherwood number (Sh), drag coefficient (CD) and Nusselt number (Nu) in fluid dynamics. Currently available models do not take into account for the effects of net gas flow generated by heterogeneous chemical reactions. Therefore, the aim of this research is to propose new models for CD and Nu based on the flow and temperature fields estimated by particle-resolved direct numerical simulations (PR-DNS). Models have been developed based on physical interpretation with only one fitting parameter, which is related to the relationship between Reynolds number and the boundary layer thickness. The developed models were compared with the simulation results solving intra-particle flow under char gasification. The drawbacks of models were identied and improvements were proposed.    The models developed in this work can be used for the better prediction of flow dynamics in large scale simulations in contrast to the classical models which do not consider the effect of heterogeneous reactions. Better predictions will assist the design of industrial processes involving reactive particle-laden flows and make them highly effcient and low energy-intensive.
18

Study of Liquid Drop Migration on Fibers and Mats due to Liquid Flow in a Thin Slit Geometry

Fang, Jia January 2015 (has links)
No description available.
19

Studies on Dynamics of Suction Piles during Their Lowering Operations

Huang, Liqing 2010 August 1900 (has links)
Suction piles are used for anchoring the mooring lines at the seafloor. One of the challenges of their installing is the occurrence of the heave resonance of the pile-cable system and possibly the heave induced pitch resonance during the lowering process. When the heave and/or pitch frequency of the vessel which operates the lowering of the pile matches the heave natural frequency of the pile-cable system, the heave resonance may occur, resulting in large heave oscillations of the pile and thus significantly increasing loads on the lowering cable and lowering devices. Furthermore, the large heave may resonantly induce the pitch of a pile. To predict and possibly mitigate the heave/pitch resonance of the pile-cable system during the lowering process, it is crucial to under the mechanism of heave induced pitch resonance and estimate the added-mass and damping coefficients of the pile-cable system accurately. The model tests of the forced heave excitation of pile models were first conducted to investigate the added-mass coefficient for a pile model with different opening area ratios at its top cap at the Haynes Coastal Engineering Laboratory of Texas AandM University. In the model tests, it was observed that the resonant heave may occur if the heave excitation frequency matches the related heave natural frequency and the pitch resonance may be induced by the heave resonance. The results of the following theoretical analysis and numerical simulation of the heave excitation of the pile-cable system are found to be consistent with the related measurements, which is helpful to further understand the physics of lowering a pile-cable system. The results of this study may be used to determine the magnitudes of total heave added-mass and damping coefficient of a pile and the heave natural frequency of the pile-cable system based upon its main characteristics. The heave induced resonant pitch is found to occur when 1) the pitch natural frequency is roughly equal to one half of the heave natural frequency and 2) the heave excitation frequency is approximately equal to the heave natural frequency. If only one of the two conditions is satisfied, no significant pitch resonance will occur. These results may have important implications to the operation of lowering offshore equipment to the seafloor in deep water.
20

Vertically Loaded Anchor: Drag Coefficient, Fall Velocity, and Penetration Depth using Laboratory Measurements

Cenac, William 2011 May 1900 (has links)
The offshore oilfield industry is continuously developing unique and break-through technologies and systems to extract hydrocarbons from ever increasing ocean depths. Due to the extreme depths being explored presently, large anchors are being utilized to secure temporary and permanent facilities over their respective drilling/production site. A vertically loaded, torpedo-style, deepwater mooring anchor developed by Delmar Systems, Inc. is one of these anchors. The OMNI-Max anchor is an efficient, cost-effective alternative for use as a mooring system anchor intended for floating facilities. The OMNI-Max is designed to free-fall towards the ocean bottom and uses its kinetic energy for self-embedment into the soil, providing a mooring system anchor point. Values such as drag coefficient and terminal velocity are vital in predicting embedment depth to obtain the mooring capacity required by the floating facility. Two scaled models of the Mark I OMNI-Max anchor were subjected to a series of tests in the Haynes Coastal Engineering Laboratory at Texas A & M University to evaluate the overall drag coefficient and penetration depth. The 1/24 scale model was tested by measuring the amount of penetration into an artificial mud mixture. The 1/15 scale model was attached to a tow carriage and towed through a water-filled tank to measure the drag forces and evaluate the drag coefficient. The anchor terminal velocity was measured using underwater cameras to track the free fall of the model anchor through 15 ft of water inside the tow tank. The 1/24 scale model penetrated the mud an average of 22 inches from the leading tip of the anchor to the mud surface, approximately 1.5 anchor lengths. The penetration depth increased as impact velocity increased, while the penetration depth decreased as the fins were retracted. The 1/15 scale anchor was towed at 6 different velocities producing a varied total drag coefficient between 0.70 and 1.12 for Reynolds number flows between 3.08E 05 and 1.17E 06. The drag coefficient increased as the fins were retracted and when the mooring rope was attached. The 1/15 scale anchor was allowed to free-fall in the tow tank and obtained an average terminal velocity of and 14.6 feet per second. The drag coefficients ranged from 0.46 to 0.83, which increased as the fins were retracted. When using the results to estimate prototype sized anchor drag coefficient, the average value was estimated to be 0.75.

Page generated in 0.0878 seconds