Spelling suggestions: "subject:"tried distillery' grains with soluble"" "subject:"tried distilled' grains with soluble""
11 |
Effects of sorghum grain and sorghum dried distillers grains with solubles on the composition, quality and sensory attributes of ground porkSkaar, Garrett Richard January 1900 (has links)
Master of Science / Department of Animal Sciences and Industry / Terry A. Houser / A total of 48 carcasses were taken from a larger trial using 288 pigs (PIC TR4 × 1050, initially 58.9 kg) in a 73 d feeding study to determine the effects of sorghum dried distillers grains with solubles (S-DDGS) in sorghum- or corn-based diets on ground pork quality. The dietary treatments included: sorghum-based diets with 0, 15, 30, or 45% SDDGS, a sorghum-based diet with 30% corn DDGS (C-DDGS) and a corn-based diet with 30% C-DDGS. Shoulders from 24 barrow and 24 gilt carcasses were ground and evaluated for proximate and fatty acid composition, iodine value (IV), objective color, thiobarbituric acid-reactive substances (TBARS), and sensory attributes. No finishing diet × gender interaction was detected for composition, fatty acid profile, color or
TBARS (P > 0.05). Pork from gilts contained less fat and more moisture (P < 0.001), was less saturated with a greater IV and total percentage of PUFA (P < 0.01), and also had a lower L* value (P < 0.001) and higher a* value (P = 0.006) than pork from
barrows. Gender did not affect total color change ( E) from 0 to 120 h (P = 0.30), TBARS (P = 0.08), or sensory attributes (P ≥ 0.32). Finishing diet had no affect on total fat, moisture, or protein composition (P ≥ 0.18). Increasing S-DDGS resulted in a linear
(P < 0.001) decrease in SFA and MUFA and an increase (P < 0.01) in PUFA and ground
pork IV. Pork from pigs fed 30% S-DDGS had a greater percentage of MUFA (P = 0.01)
and a lower percentage of PUFA (P > 0.006) and reduced IV (P = 0.03) compared to pork from pigs fed the sorghum-based diet with 30% C-DDGS. Diet did not affect TBARS (P = 0.37) or L*, a*, or b* values (P ≥ 0.11) but was shown to influence E (P = 0.01) with pork from pigs fed sorghum grain and 30% S-DDGS having less total change than all other treatments. It is concluded that consumers will not be able to differentiate ground pork from pigs fed DDGS and that feeding sorghum grain and S-DDGS can be done without affecting ground pork quality.
|
12 |
Reduction of the mycotoxin deoxynivalenol in barley ethanol co-products using trichothecene 3-O-acetyltransferasesKhatibi, Piyum 18 August 2011 (has links)
The fungal plant pathogen Fusarium graminearum Schwabe (teleomorph Gibberella zeae¬) produces a dangerous trichothecene mycotoxin called deoxynivalenol (DON) and causes a devastating disease of barley (Hordeum vulgare L.) called Fusarium head blight (FHB). Food and feed products derived from barley, such as dried distillers grains with solubles (DDGS), may be contaminated with DON and pose a threat to the health of humans and domestic animals. New methods to mitigate the threat of DON in barley need to be developed and implemented. TRI101 and TRI201 are trichothecene 3-O-acetyltransferases that modify DON and reduce its toxicity. The first objective of this research was to isolate unique TRI101 and TRI201 enzymes that modify DON efficiently. We hypothesized that TRI101/TRI201 enzymes from different species of Fusarium would have varying rates and abilities to modify DON. Using degenerate primers, an internal portion of TRI101 or TRI201 was identified in 54 strains of Fusarium. Full-length sequences of seven TRI101 or TRI201 genes were cloned and expressed in yeast. All seven genes acetylated DON, but at different rates. The second objective of this research was to utilize transformed yeast expressing TRI101 or TRI201 to reduce DON levels in barley mashes and ultimately in DDGS. We hypothesized that DON levels would be reduced in DDGS derived from mashes prepared with transformed yeast. Five different barley genotypes were used to prepare the fermentation mashes and DON levels were reduced in all DDGS samples derived from mashes prepared with transformed yeast. The third objective of this study was to characterize barley genotypes developed at Virginia Tech for resistance to FHB and DON. We hypothesized that significant differences in resistance would be observed among barley genotypes and FHB resistance would be associated with reduced DON accumulation. From 2006 to 2010, FHB resistance was assessed in hulled (22 to 37) and hulless (13 to 32) barley genotypes by measuring incidence and index, and DON resistance was determined by quantifying DON levels in ground grain using gas chromatography-mass spectrometry. Our study showed that FHB and DON resistance is significantly determined by genotype. The final objective of this study was to develop a robust tissue culture system necessary for future development of transformed barley plants with FHB resistance gene(s). We hypothesized that callus production would vary among barley genotypes. In our analysis of 47 Virginia barley genotypes, 76% (36/47) of the genotypes produced callus tissue and there were significant differences in callus size. Our work sets the stage for identifying and characterizing DON detoxification genes in the future. The development of commercial barley lines that do not accumulate DON and that are resistant to FHB will directly impact growers and producers of small grains in the eastern U.S. / Ph. D.
|
13 |
Optimizing the efficiency of nutrient utilization in dairy cows2013 March 1900 (has links)
A series of experiments were conducted to determine nutritional strategies to improve the efficiency of N utilization in dairy cows when feeding co-products including wheat-based (W-DDGS) and corn-wheat blend distillers grains with solubles (B-DDGS), and dried whey permeate (DWP). In Experiment 1, the objective was to determine the effects of replacing canola meal (CM) as the major protein source with W-DDGS on ruminal fermentation, microbial protein production, omasal nutrient flow, and animal performance. Cows were fed either a standard barley silage-based total mixed ration containing CM as the major protein supplement (0% W-DDGS, control) or diets formulated to contain 10, 15 and 20% W-DDGS (dry matter [DM] basis), with W-DDGS replacing primarily CM. Diets were isonitrogenous (18.9% crude protein [CP]). Inclusion of W-DDGS to the diet did not negatively affect ruminal fermentation, microbial protein production, and omasal nutrient flow. However, there was a 0.7- to 2.4-kg increase in DM intake, and a 1.2- to 1.8-kg increase in milk yield after the addition of W-DDGS in place of CM. In Experiment 2, the objective was to delineate the effects of including either W-DDGS or B-DDGS dried distillers grains with solubles as the major protein source in low or high CP diets fed to dairy cows on ruminal function, microbial protein synthesis, omasal nutrient flows, urea-N recycling, and milk production. The treatment factors were type of distillers co-product (W-DDGS vs. B-DDGS) and dietary CP content (15.2 vs. 17.3%; DM basis). The B-DDGS was produced from a mixture of 15% wheat and 85% corn grain. All diets were formulated to contain 10% W-DDGS or B-DDGS on a DM basis. Feeding up to 10% of dietary DM as B-DDGS or W-DDGS as the major source of protein did not have negative effects on metabolizable protein (MP) supply and milk production in dairy cows. However, reducing dietary CP content from 17.3 to 15.2% decreased milk production. This response was attributed to an insufficient supply of ruminally degradable protein (RDP) that suppressed microbial nonammonia N (NAN) synthesis in the rumen, thus decreasing intestinal MP supply. In Experiment 3, the objective was to determine the effects of replacing barley or corn starch with lactose (as DWP) in diets containing 10% W-DDGS on ruminal function, omasal nutrient flow, and lactation performance. The treatment factors were source of starch (barley vs. corn) and dietary inclusion level of DWP (0 vs. 6%; DM basis) as a partial replacement for starch. Diets were isonitrogenous (18% CP) and contained 3 or 8% total sugar. The starch content of the low sugar diet was 24% compared to 20% for the high sugar diet. Dry matter intake, and milk and milk component yields did not differ with diet. However, partially replacing dietary corn or barley starch with sugar up-regulated ruminal acetate and propionate absorption, and reduced ruminal NH3-N concentration, but had no effect on ruminal pH, microbial protein synthesis, omasal nutrient flow and production in dairy cows. In summary, data presented in this thesis indicate that W-DDGS and B-DDGS can be included as the major source of protein in dairy cow diets without compromising ruminal function, nutrient supply and milk production in dairy cows. Feeding medium to low CP diets, and partial replacement of starch with sugar in diets containing W-DDGS and B-DDGS can improve N utilization efficiency in dairy cows. Additionally, an upregulation of facilitated transport of acetate and propionate across epithelial cells possibly prevents the occurrence of ruminal acidosis when lactose partially replaces starch in cow diets.
|
Page generated in 0.1526 seconds