1 |
On A-expansions of Drinfeld Modular FormsPetrov, Aleksandar Velizarov January 2012 (has links)
In this dissertation, we introduce the notion of Drinfeld modular forms with A-expansions, where instead of the usual Fourier expansion in tⁿ (t being the uniformizer at infinity), parametrized by n ∈ N, we look at expansions in tₐ, parametrized by a ∈ A = F(q)[T]. We construct an infinite family of such eigenforms. Drinfeld modular forms with A-expansions have many desirable properties that allow us to explicitly compute the Hecke action. The applications of our results include: (i) various congruences between Drinfeld eigenforms; (ii) interesting relations between the usual Fourier expansions and A-expansions, and resulting recursive relations for special families of forms with A-expansions; (iii) the computation of the eigensystems of Drinfeld modular forms with A-expansions; (iv) many examples of failure of multiplicity one result, as well as a restrictive multiplicity one result for Drinfeld modular forms with A-expansions; (v) the proof of diagonalizability of the Hecke action in 'non-trivial' cases; (vi) examples of eigenforms that can be represented as non-trivial' products of eigenforms; (vii) an extension of a result of Böckle and Pink concerning the Hecke properties of the space of cuspidal modulo double cuspidal forms for Γ₁(T) to the groups GL₂(F(q)[T]) and Γ₀(T).
|
2 |
On the coefficients of Drinfeld modular forms of higher rankBasson, Dirk Johannes 04 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Rank 2 Drinfeld modular forms have been studied for more than 30 years, and
while it is known that a higher rank theory could be possible, higher rank
Drinfeld modular forms have only recently been de ned. In 1988 Gekeler
published [Ge2] in which he studies the coe cients of rank 2 Drinfeld modular
forms. The goal of this thesis is to perform a similar study of the coe cients
of higher rank Drinfeld modular forms.
The main results are that the coe cients themselves are (weak) Drinfeld
modular forms, a product formula for the discriminant function, the rationality
of certain naturally de ned modular forms, and the computation of
some Hecke eigenforms and their eigenvalues. / AFRIKAANSE OPSOMMING: Drinfeld modulêre vorme van rang 2 word al vir meer as 30 jaar bestudeer
en alhoewel dit lankal bekend is dat daar Drinfeld modulêre vorme van hoër
rang moet bestaan, is die de nisie eers onlangs vasgepen. In 1988 het Gekeler
die artikel [Ge2] gepubliseer waarin hy die koeffisiënte van Fourier reekse van
rang 2 Drinfeld modulêre vorme bestudeer. Die doel van hierdie proefskrif is
om dieselfde studie vir Drinfeld modulêre vorme van hoër rang uit te voer.
Die hoofresultate is dat die koeffi siënte self (swak) Drinfeld modulêre
vorme is, `n produk formule vir die diskriminant funksie, die feit dat sekere
natuurlik gede finiëerde modulêre vorme rasionaal is, en die vasstelling van
Hecke eievorme en hul eiewaardes.
|
3 |
Torsion rationnelle des modules de DrinfeldArmana, Cécile 05 November 2008 (has links) (PDF)
Cette thèse étudie l'existence de points de torsion pour les modules de Drinfeld de rang 2 sur des extensions finies de F_q(T), pour q puissance d'un nombre premier. Notre approche suit celle de Mazur et Merel pour la torsion des courbes elliptiques sur les corps de nombres : nous introduisons un quotient de la jacobienne d'une courbe modulaire de Drinfeld, défini à l'aide d'un symbole modulaire de Teitelbaum particulier, et étudions ses propriétés. Sous une hypothèse de dualité entre algèbre de Hecke et formes modulaires pour F_q[T], ainsi qu'une hypothèse technique mineure, on montre le résultat suivant : s'il existe un module de Drinfeld de rang 2 sur une extension de degré au plus q de F_q(T), muni d'un point de torsion d'ordre un idéal premier n de F_q[T], alors le degré de n est au plus max(q,4). Nous utilisons pour cela une description de l'action de l'algèbre de Hecke sur les symboles modulaires de Teitelbaum et sur les formes modulaires pour F_q[T]. Lorsque le degré de n est petit, on obtient des résultats non conditionnels : il n'existe aucun module de Drinfeld de rang 2 sur une extension de degré au plus 2 (resp. au plus 3) de F_q(T) possédant un point de torsion d'ordre un idéal premier de degré 3 (resp. de degré 4 si q est au moins 7). Cela confirme partiellement une conjecture de Poonen et Schweizer de borne uniforme sur la torsion des modules de Drinfeld.
|
4 |
Séries génératrices non-commutatives de polyzêtas et associateurs de DrinfeldRacinet, Georges 14 December 2000 (has links) (PDF)
On étudie les relations algébriques sur le corps des nombres rationnels entre les nombres polyzêtas (généralisations à plusieurs indices des valeurs de la fonction zêta de Riemann aux entiers positifs).<br /><br />Après avoir dressé une liste de relations algébriques considérées comme élémentaires, j'explore l'algèbre des "polyzêtas formels" définie par ces relations (et elles seules). Je mets en évidence une structure de torseur sur l'ensemble DM des séries génératrices non-commutatives de polyzêtas "formels". Ce torseur est imité du torseur des associateurs, défini par Drinfel'd. Ils sont tous deux réalisés comme ensembles de séries formelles non-commutatives sur deux lettres et leurs lois d'actions sont données par les mêmes formules. On en déduit facilement que l'algèbre des polyzêtas formels est une algèbre de polynômes (théorème d'Écalle). L'intersection du groupe pro-unipotent DM et du groupe GRT de Drinfel'd (lié aux associateurs) est très grosse et il est naturel de conjecturer que ces groupes sont égaux.
|
5 |
Special Values of the Goss L-function and Special PolynomialsLutes, Brad Aubrey 2010 August 1900 (has links)
Let K be the function field of an irreducible, smooth projective curve X defined over Fq. Let [lemniscate] be a fixed point on X and let A [a subset of or is equal to] K be the Dedekind domain of functions which are regular away from [lemniscate]. Following the work of Greg Anderson, we define special polynomials and explain how they are used to define an A-module (in the case where the class number of A and the degree of [lemniscate] are both one) known as the module of special points associated to the Drinfeld A-module [rho]. We show that this module is finitely generated and explicitly compute its rank. We also show that if K is a function field such that the degree of [lemniscate] is one, then the Goss L-function, evaluated at 1, is a finite linear combination of logarithms evaluated at algebraic points. We conclude with examples showing how to use special polynomials to compute special values of both the Goss L-function and the Goss zeta function.
|
6 |
An analogue of the Andre-Oort conjecture for products of Drinfeld modular surfacesKarumbidza, Archie 03 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: This thesis deals with a function eld analog of the André-Oort conjecture. The (classical) André-Oort conjecture concerns the distribution of special points on Shimura
varieties. In our case we consider the André-Oort conjecture for special points in the
product of Drinfeld modular varieties. We in particular manage to prove the André-
Oort conjecture for subvarieties in a product of two Drinfeld modular surfaces under
a characteristic assumption. / AFRIKAANSE OPSOMMING: Hierdie tesis handel van 'n funksieliggaam analoog van die André-Oort Vermoeding.
Die (Klassieke) André-Oort Vermoeding het betrekking tot die verspreiding van
spesiale punte op Shimura varietiete. Ons geval beskou ons die André-Oort Vermoeding
vir spesiale punte op die produk Drinfeldse modulvarietiete. In die besonders,
bewys ons die André-Oort Vermoeding vir ondervarieteite van 'n produk van twee
Drinfeldse modulvarietiete, onderhewig aan 'n karakteristiek-aanname.
|
7 |
Sur la conjecture d'André-Oort et courbes modulaires de DrinfeldBREUER, Florian 08 November 2002 (has links) (PDF)
Nous démontrons une version pour la caractéristique p d'un cas spécial de la conjecture d'André-Oort. Plus précisement, soit Z le produit de n courbes modulaires de Drinfeld, et soit X une sous-variété algébrique irréductible de Z. Alors nous démontrons que X contient un ensemble Zariski-dense de points CM (c.a.d. points correspondant aux n-uples de A-modules de Drinfeld de rang 2 avec mulitplications complexes, où A=F_q[T], et q est une puissance d'un nombre prémier impair) si et seulement si X est une sous-variété dite modulaire. Notre approche répose sur une approche (en caractéristique 0) due à Edixhoven.
|
8 |
Traces of Hecke operators on Drinfeld modular forms via point countsDe Vries, Sjoerd January 2023 (has links)
In this licentiate thesis, we study the action of Hecke operators on Drinfeld cusp forms via the theory of crystals over function fields. The thesis contains one preliminary chapter, in which we recall some basic theory of Drinfeld modules and Drinfeld modular forms, as well as the Eichler-Shimura theory developed by Böckle. The core of the thesis consists of Chapter II, in which we prove a Lefschetz trace formula for crystals over stacks and deduce a Ramanujan bound for Drinfeld modular forms, and Chapter III, in which we compute traces and slopes of Hecke operators. We formulate several questions and conjectures based on our data. We also include an appendix in which we discuss the relationship between traces of an operator in positive characteristic and its eigenvalues.
|
9 |
Explicit constructions of asymptotically good towers of function fieldsLotter, Ernest Christiaan 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2003 / ENGLISH ABSTRACT: A tower of global function fields :F = (FI, F2' ... ) is an infinite tower of separable extensions
of algebraic function fields of one variable such that the constituent function
fields have the same (finite) field of constants and the genus of these tend to infinity.
A study can be made of the asymptotic behaviour of the ratio of the number of places
of degree one over the genus of FJWq as i tends to infinity. A tower is called asymptotically
good if this limit is a positive number. The well-known Drinfeld- Vladut
bound provides a general upper bound for this limit.
In practise, asymptotically good towers are rare. While the first examples were
non-explicit, we focus on explicit towers of function fields, that is towers where equations
recursively defining the extensions Fi+d F; are known. It is known that if the
field of constants of the tower has square cardinality, it is possible to attain the
Drinfeld- Vladut upper bound for this limit, even in the explicit case. If the field of
constants does not have square cardinality, it is unknown how close the limit of the
tower can come to this upper bound.
In this thesis, we will develop the theory required to construct and analyse the
asymptotic behaviour of explicit towers of function fields. Various towers will be
exhibited, and general families of explicit formulae for which the splitting behaviour
and growth of the genus can be computed in a tower will be discussed. When the
necessary theory has been developed, we will focus on the case of towers over fields of
non-square cardinality and the open problem of how good the asymptotic behaviour
of the tower can be under these circumstances. / AFRIKAANSE OPSOMMING: 'n Toring van globale funksieliggame F = (FI, F2' ... ) is 'n oneindige toring van
skeibare uitbreidings van algebraïese funksieliggame van een veranderlike sodat die
samestellende funksieliggame dieselfde (eindige) konstante liggaam het en die genus
streef na oneindig. 'n Studie kan gemaak word van die asimptotiese gedrag van die
verhouding van die aantal plekke van graad een gedeel deur die genus van Fi/F q soos
i streef na oneindig. 'n Toring word asimptoties goed genoem as hierdie limiet 'n
positiewe getal is. Die bekende Drinfeld- Vladut grens verskaf 'n algemene bogrens
vir hierdie limiet.
In praktyk is asimptoties goeie torings skaars. Terwyl die eerste voorbeelde nie
eksplisiet was nie, fokus ons op eksplisiete torings, dit is torings waar die vergelykings
wat rekursief die uitbreidings Fi+d F; bepaal bekend is. Dit is bekend dat as
die kardinaliteit van die konstante liggaam van die toring 'n volkome vierkant is, dit
moontlik is om die Drinfeld- Vladut bogrens vir die limiet te behaal, selfs in die eksplisiete
geval. As die konstante liggaam nie 'n kwadratiese kardinaliteit het nie, is
dit onbekend hoe naby die limiet van die toring aan hierdie bogrens kan kom.
In hierdie tesis salons die teorie ontwikkel wat benodig word om eksplisiete torings
van funksieliggame te konstrueer, en hulle asimptotiese gedrag te analiseer. Verskeie
torings sal aangebied word en algemene families van eksplisiete formules waarvoor die
splitsingsgedrag en groei van die genus in 'n toring bereken kan word, sal bespreek
word. Wanneer die nodige teorie ontwikkel is, salons fokus op die geval van torings
oor liggame waarvan die kardinaliteit nie 'n volkome vierkant is nie, en op die oop
probleem aangaande hoe goed die asimptotiese gedrag van 'n toring onder hierdie
omstandighede kan wees.
|
10 |
Interprétation p-automatique des groupes formels le Lubin-Tate et des modules de Drinfeld réduitsCadic, Christophe 14 January 1999 (has links) (PDF)
Ce travail part de l'observation d'un résultat de P. Robba établi en 1982 dont l'énoncé est le suivant : si l est un entier p-adique, alors la série (1+T)l à coefficients dans l'anneau des entiers p-adiques, réduite modulo p, est algébrique sur le corps des fractions rationnelles à coefficients dans le corps fini à p éléments si et seulement si l est rationnel. En remarquant que cette série a une expression très proche de celle d'un endomorphisme du groupe multiplicatif sur l'anneau des entiers p-adiques, on généralise ce résultat à une classe de groupes formels de Lubin-Tate dont le logarithme vérifie une certaine condition d'algébricité. Nous interprétons ensuite ce résultat via le foncteur XK de Fontaine et Wintenberger et en tirons des conséquences sur l'indépendance algébrique des automorphismes de corps locaux. Dans la deuxième partie de ce travail, nous établissons l'analogue du théorème de P. Robba dans le cas des modules de Drinfeld de rang 1 définis sur le complété P-adique de l'anneau des polynômes à coefficients dans un corps fini où P est un polynôme irréductible, unitaire et à coefficients dans ce même corps fini.
|
Page generated in 0.0481 seconds