• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Drive Level Dependence of Advanced Piezoelectric Resonators

Xie, Yuan 08 1900 (has links)
Resonators are one of the most important parts of electronic products. They provide a stable reference frequency to ensure the operation of these products. Recently, the electronic products have the trend of miniaturization, which rendered the size reduction of the resonators as well [1]. Better design of the resonators relies on a better understanding of the crystals' nonlinear behavior [2]. The nonlinearities affect the quality factor and acoustic behavior of MEMS (Micro-Electro-Mechanical-System) and nano-structured resonators and filters [3]. Among these nonlinear effects, Drivel Level Dependence (DLD), which describes the instability of the resonator frequency due to voltage level and/or power density, is an urgent problem for miniaturized resonators [2]. Langasite and GaPO4 are new promising piezoelectric material. Resonators made from these new materials have superior performance such as good frequency-temperature characteristics, and low acoustic loss [2]. In this thesis, experimental measurements of drive level dependence of langasite resonators with different configurations (plano-plano, single bevel, and double bevel) are reported. The drive level dependence of GaPO4 resonators are reported as well for the purpose of comparison. The results show that the resonator configuration affects the DLD of the langasite resonator. Experiments for DLD at elevated temperature are also performed, and it was found that the temperature also affects the DLD of the langasite resonator.

Page generated in 0.1144 seconds