1 |
Development of Assessment Tasks to Measure the Driving Capabilities of Persons with DisabilitiesUpadhyay, Ashwin 01 November 2004 (has links)
The need to lead an independent and fuller life is as much a right of a person with physical disability as any other human being. Driving capabilities of a person with a disability have been assessed and evaluated using qualitative techniques. However, certain inadequacies that arise using qualitative measures can be avoided if the assessment is based on quantitative techniques.
The above requirement necessitates the need to devise a method and a system which is focused on the right development of the techniques used in assessing and measuring different capabilities (such as range of motion and force input) of the person with a disability in a detailed manner. This thesis focuses on developing an experimental method which can be adopted as an assessment tool to evaluate different capabilities of a person with a disability. The test bed used for this purpose consists of two independent systems combined together by an interface. They are the six-degree of freedom force reflecting hand controller known as the PHANTOM haptic device [12] and a commercially available adaptive driving control system known as the AEVIT system [15]. The test bed provides compatibility between the PHANTOM and AEVIT which makes it feasible for the PHANTOM to model and control the driving input devices (steering and gas/brake) of the AEVIT system.
|
2 |
An Electromechanical Synchronization of Driving Simulator and Adaptive Driving Aide for Training Persons with DisabilitiesBerhane, Rufael 24 March 2008 (has links)
Cars have become necessities of our daily life and are especially important to people with disability because they extend their range of activity and allow participation in a social life.
Sometimes driving a normal car is impossible for individuals with severe disability and they require additional driving aide. However, it is dangerous to send these individuals on the road without giving them special training on driving vehicles using an adaptive aide.
Nowadays there are a number of driving simulators that train disabled persons but none of them have joystick-enabled training that controls both steering, gas and break pedal. This necessitates the design of a method and a system which helps a person with disabilities learn how to operate a joystick-enabled vehicle, by using a combination of an advanced vehicle interface system, which is a driving aide known as Advanced Electronic Vehicle Interface Technology (AVEIT) and virtual reality driving simulator known as Simulator Systems International (SSI).
This thesis focuses on the mechanism that synchronizes both AVEIT and SSI systems. This was achieved by designing a mechanical and electrical system that serves as a means of transferring the action between the AVEIT and SSI system. The mechanical system used for this purpose consists of two coupler units attached to AVEIT and SSI each combined together by the electrical system. As the user operates the joystick, the action of AVEIT is transferred to the SSI system by the help of the electromechanical system. The design provides compatibility between the AVEIT and SSI system which makes them convenient for training persons with disability.
|
Page generated in 0.0626 seconds