• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of Tilted surfaces on Ankle Kinematics and EMG activities in landing

Bhaskaran, Divya 01 August 2010 (has links)
The purpose of this study was to examine the effects of landing on a combined inverted and plantarflexed surface on the ankle kinematics and electromyographic (EMG) activities of the medial gastrocnemius (MG), peroneal longus (PL) and anterior tibialis muscles (TA). Twelve recreational athletes performed five drop landings from an overhead bar of 30 cm height on to each of these surfaces: a flat surface, a 25° inversion surface (inverted), and a combined surface (combined) of 25° inversion and 25° plantarflexion. The three dimensional kinematic variables and integrated EMG (IEMG) of the three muscles were assessed using one-way repeated measures analysis of variance (ANOVA, p < 0.05) and a 3 × 3 (surface × muscle) ANOVA, respectively. The IEMG results showed a significant muscle by surface interaction. The flat surface induced higher TA activity than the two tilted surfaces. The inverted surface produced significantly higher inversion peak angle and velocity than the flat surface, but similar PL activity across the surfaces. The MG IEMG and ankle plantarflexion angle were significantly higher for the combined surface compared to the inverted surface. These findings suggest that compared to inversion, a combination of plantarflexion and inversion provides a more realistic surface for simulating lateral ankle sprains.
2

Effect of Tilted surfaces on Ankle Kinematics and EMG activities in landing

Bhaskaran, Divya 01 August 2010 (has links)
The purpose of this study was to examine the effects of landing on a combined inverted and plantarflexed surface on the ankle kinematics and electromyographic (EMG) activities of the medial gastrocnemius (MG), peroneal longus (PL) and anterior tibialis muscles (TA). Twelve recreational athletes performed five drop landings from an overhead bar of 30 cm height on to each of these surfaces: a flat surface, a 25° inversion surface (inverted), and a combined surface (combined) of 25° inversion and 25° plantarflexion. The three dimensional kinematic variables and integrated EMG (IEMG) of the three muscles were assessed using one-way repeated measures analysis of variance (ANOVA, p < 0.05) and a 3 × 3 (surface × muscle) ANOVA, respectively. The IEMG results showed a significant muscle by surface interaction. The flat surface induced higher TA activity than the two tilted surfaces. The inverted surface produced significantly higher inversion peak angle and velocity than the flat surface, but similar PL activity across the surfaces. The MG IEMG and ankle plantarflexion angle were significantly higher for the combined surface compared to the inverted surface. These findings suggest that compared to inversion, a combination of plantarflexion and inversion provides a more realistic surface for simulating lateral ankle sprains.
3

Effect of Fatigue on Muscle Contraction in Dancers Performing Drop Landings in Coupe

Bryan, Alexandra E. 11 June 2018 (has links)
No description available.
4

The Differences in Time to Stability, Foot Muscle Size, and Toe Flexor Strength Between Cheerleaders and Gymnasts

Garner, Kelsey Renee 01 December 2016 (has links)
Context: There has been recent speculation that the intrinsic muscles of the foot may play a larger role in lower extremity control and injury than previously believed. Multiple studies have shown that certain intrinsic muscles increase in size and strength after transitioning to minimalist shoe running, theoretically decreasing injury risk. There are currently no studies that examine the effect that training barefoot has in other athletic populations. Objective: Our purpose was to compare the intrinsic and extrinsic foot muscle size and strength in gymnasts (who predominantly train barefoot) and cheerleaders (who predominantly train shod). Another purpose was to measure time to stability for both groups shod and unshod. Design: Observational study. Setting: Human Performance Laboratory. Participants: 16 collegiate gymnasts (height = 159.3 ± 4.9cm, weight = 56.7 ± 4.3kg) and 16 collegiate cheerleaders (height = 161.9 ± 5.4cm, weight = 58.7 ± 7.1kg) volunteered for this study. Main Outcome Measure(s): The muscle size of 6 intrinsic and extrinsic muscles of the foot were measured using ultrasound, toe flexor strength, as assessed using a custom-made dynamometer, and time to stability following a drop landing, as assessed using ground reaction force data collected with force plates. Results: There were no significant group differences in great toe flexor strength (p = 0.274), lateral toe flexor strength (p = 0.824), or any of the time to stability conditions (p = 0.086 – 0.90). Only one muscle, fibularis longus, was significantly bigger in gymnasts than cheerleaders (p = 0.017) Conclusions: Our findings suggest that the barefoot training of gymnasts may not have as large of an impact on the foot musculature and strength as running barefoot or in minimalist shoes has on these factors.
5

Effects of Different Loading Intensities on Skeletal Adaptation to Exercise in Prepubertal Girls

Wiebe, Peter N., res.cand@acu.edu.au January 2004 (has links)
This study involved a 28-week school-based exercise trial of single-leg drop-landing exercise with 42 girls (Tanner stage 1; 6-10 yr old) randomly assigned to control (C), low-drop (LD) or high-drop(HD) exercise groups. The latter two groups performed single-leg drop-landings (3 sessions.wk-1 and 50 landings.session-1) from 14cm and 28cm, respectively using the non-dominant leg. Single-leg peak ground-reaction impact forces (PGRIF) in a sub-sample ranged between 2.5 – 4.4 x body-weight (BW). No differences (p>0.05) among groups at baseline for age, stature, lean tissue mass (LTM - DXA - Lunar 3.6-DPX), leisure time physical activity or average daily calcium intake were detected. No significant within group changes for between leg differences from baseline to post-training and no significant differences among groups at baseline, or in magnitude of change for any of the dominant or non-dominant (loaded) leg bone mineral content (BMC g) measures determined by DXA – loaded leg total - 19.06, 25.5, 25.46 [p=.156], femoral neck - 0.14, 0.11, 0.15 [p=.959], greater trochanter - 0.37, 0.06, 0.26 [p=.733], mid femoral shaft - 3.87, 3.87, 3.42 [p=.677] for the C, LD and HD groups, respectively, after adjusting for the covariates baseline body and fat mass, and change in LTM (ANCOVA) were observed. Similarly, following ANCOVA adjustments no significant differences for changes in calcaneal speed of sound and broadband ultrasound attenuation (CUBA Clinical), DXA derived changes in femoral neck (-0.009, 0.033, -0.009; p=.189) and total MFS (0.029, 0.041, 0.053; p=.447) volumetric BMD (g.cm-3), or MFS cortical volumetric BMD, the latter derived by a new technique combining MRI and DXA were identified. TBBMC changed by 79.6g-C, 100.2g-LD and 91.9g-HD (p=.339). Combining data from both exercise groups to increase statistical power produced similar results. No significant within group changes for between leg differences from baseline to post-training and no significant differences among groups at baseline, or in magnitude of change for any of the dominant or non-dominant (loaded) leg bone geometrical (area cm2) determined by MRI using ANALYZE® software of proximal - 22.18, 12.91, 19.86 [p=.248], mid - 19.83, 15.91, 19.64 [p=.233], or distal - 14.78, 16.07, 13.35 [p=.792], slice cortical area for the C, LD and HD groups, respectively, after adjusting for the covariates baseline body and fat mass, and change in LTM (ANCOVA) were detected. Similarly there were no significant biomechanical cross sectional moment of inertia (CSMI cm4) changes determined by Scion Image® (Frederick, Maryland: Version-Beta 3B) and a custom macro program of proximal - 896, 815, 649 [p=.415], mid - 1054, 806, 1087 [p=.471], or distal - 1197, 1079, 966 [p=.606], slice CSMI for the C, LD and HD groups, respectively after adjusting for the same covariates. In contrast to some recent reports, our findings suggest that strictly controlled uni-modal; uni-directional single-leg drop-landing exercises involving low-moderate peak ground-reaction impact forces are not osteogenic in the developing prepubertal female skeleton.
6

Sex and Foot Posture Affects Ground Reaction Forces during a Single-leg Drop Landing

Eckburg, Meredith L. 29 July 2008 (has links)
No description available.

Page generated in 0.0571 seconds