• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 397
  • 125
  • 85
  • 81
  • 63
  • 53
  • 13
  • 11
  • 10
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 1026
  • 241
  • 149
  • 126
  • 125
  • 87
  • 79
  • 57
  • 56
  • 56
  • 54
  • 51
  • 49
  • 47
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Investigation into the velocity distribution through an annular packed bed / Hendrik Jacobus Reyneke

Reyneke, Hendrik Jacobus January 2009 (has links)
The purpose of this study was to investigate the velocity distribution through an annular bed packed randomly with equal sized spheres. Extensive research has been conducted on the velocity distribution inside packed beds packed with equal sized spheres, different sized spheres, deformed spheres, cylinders and Raschig-rings. A majority of these experimental and numerical studies focused on the cylindrical packed bed. These studies and numerical models are all confined to the velocity profile once the fluid flow is fully developed. The development of the velocity through the inlet region of the bed and the fluid flow redistribution in the outlet of the bed is thus neglected. The experimental investigation into the velocity distribution down stream of the annular packed bed of the HTTU indicated that the velocity profile was independent of the mass flow rate for a particle Reynolds number range of 439 £ Re £ 3453 . These velocity profiles did not represent the distribution of the axial velocity due to shortcomings associated with the single sensor hot wire anemometry system used to measure the velocity distribution. A numerical investigation, using the RANS CFD code STAR-CCM+®, into the velocity distribution downstream of an explicitly modelled bed of spheres indicated that the axial velocity distribution could be extracted from the experimental velocity profiles by using an adjustment factor of 0.801. This adjusted velocity profile was used in the verification of the implicit bed simulation model. The implicit bed simulation model was developed in STAR-CCM+®. The resistance of the spheres was modelled using the KTA (1981) pressure drop correlation and the structure of the bed was modelled using the porosity correlation proposed by Martin (1978), while the effective viscosity model of Giese et al. (1998), adjusted by a factor of 0.8, was used to model the velocity distribution in the near wall region. It was found that the structure in the inlet region of the bed, where two walls disturb the packing structure, can be modelled as the weighted average of the radial and axial porosity while the structure in the outlet regions can be modelled by letting the radial porosity increase linearly to unity. The basic shape of the velocity profile is established immediately when the fluid enters the bed. The amplitude of the velocity peaks however increase in magnitude until the velocity profile is fully developed at a distance approximately of five sphere diameters from the bed inlet. The profile remains constant throughout the bed until the outlet region of the bed is reached. In the outlet region a significant amount of fluid redistribution is observed. The amplitude of the velocity peaks is reduced and the position of the velocity peaks is shifted inwards towards the centre of the annular region. The fully developed velocity profile, predicted by the simulation model is in good agreement with profiles presented by amongst others Giese et al. (1998). The current model however also offers insight into the development of the profile through the inlet of the bed and the fluid redistribution, which occurs in the outlet region of the bed. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2010.
322

Two-phase flow in a mini-size impacting tee junction with a rectangular cross-section

Elazhary, Amr Mohamed Ali 27 July 2012 (has links)
An experimental study was conducted in order to investigate the two-phase-flow phenomena in a mini-size, horizontal impacting tee junction. The test section was machined in an acrylic block with a rectangular cross-section of 1.87-mm height × 20-mm width on the inlet and outlet sides. Air-water mixtures at 200 kPa (abs) and room temperature were used as the test fluids. Four flow regimes were identified visually: bubbly, plug, churn, and annular over the ranges of gas and liquid superficial velocities of 0.04 ≤ JG ≤ 10 m/s and 0.02 ≤ JL ≤ 0.7 m/s, respectively, and a flow regime map was developed. The present flow-regime map was compared with several experimental maps. It is thought from those comparisons that the channel height has a more significant role in determining the flow-regime boundaries than the hydraulic diameter. The two-phase fully-developed pressure gradient was measured in the inlet and the outlet sides of the junction for six different inlet conditions and various mass splits at the junction. Comparisons were conducted between the present data and former correlations. The correlations that agreed best with the present data were identified. Five single-phase test sets were performed. In each set of experiments, the pressure distribution was measured for the whole range of the mass split ratio, Wi/W1. The pressure drop at the junction at each value of Wi/W1 was calculated. Values of the pressure-loss coefficient, , were calculated at various Wi/W1 and inlet Reynolds number. The pressure-loss coefficient was strongly dependent on the inlet Reynolds number in the laminar region, while the results for the turbulent region were almost coincident. Numerical simulations of single-phase flow in an impacting tee junction of identical dimensions to that of the present test-section were performed to confirm the results of the experiments. Phase-redistribution experiments were conducted covering all four inlet flow regimes and models were proposed for predicting the experimental data. Good agreement in terms of magnitude and trend was obtained between the present experimental data and the proposed model. New correlations were developed for the single- and two-phase pressure drop in the junction.
323

Investigation into the velocity distribution through an annular packed bed / Hendrik Jacobus Reyneke

Reyneke, Hendrik Jacobus January 2009 (has links)
The purpose of this study was to investigate the velocity distribution through an annular bed packed randomly with equal sized spheres. Extensive research has been conducted on the velocity distribution inside packed beds packed with equal sized spheres, different sized spheres, deformed spheres, cylinders and Raschig-rings. A majority of these experimental and numerical studies focused on the cylindrical packed bed. These studies and numerical models are all confined to the velocity profile once the fluid flow is fully developed. The development of the velocity through the inlet region of the bed and the fluid flow redistribution in the outlet of the bed is thus neglected. The experimental investigation into the velocity distribution down stream of the annular packed bed of the HTTU indicated that the velocity profile was independent of the mass flow rate for a particle Reynolds number range of 439 £ Re £ 3453 . These velocity profiles did not represent the distribution of the axial velocity due to shortcomings associated with the single sensor hot wire anemometry system used to measure the velocity distribution. A numerical investigation, using the RANS CFD code STAR-CCM+®, into the velocity distribution downstream of an explicitly modelled bed of spheres indicated that the axial velocity distribution could be extracted from the experimental velocity profiles by using an adjustment factor of 0.801. This adjusted velocity profile was used in the verification of the implicit bed simulation model. The implicit bed simulation model was developed in STAR-CCM+®. The resistance of the spheres was modelled using the KTA (1981) pressure drop correlation and the structure of the bed was modelled using the porosity correlation proposed by Martin (1978), while the effective viscosity model of Giese et al. (1998), adjusted by a factor of 0.8, was used to model the velocity distribution in the near wall region. It was found that the structure in the inlet region of the bed, where two walls disturb the packing structure, can be modelled as the weighted average of the radial and axial porosity while the structure in the outlet regions can be modelled by letting the radial porosity increase linearly to unity. The basic shape of the velocity profile is established immediately when the fluid enters the bed. The amplitude of the velocity peaks however increase in magnitude until the velocity profile is fully developed at a distance approximately of five sphere diameters from the bed inlet. The profile remains constant throughout the bed until the outlet region of the bed is reached. In the outlet region a significant amount of fluid redistribution is observed. The amplitude of the velocity peaks is reduced and the position of the velocity peaks is shifted inwards towards the centre of the annular region. The fully developed velocity profile, predicted by the simulation model is in good agreement with profiles presented by amongst others Giese et al. (1998). The current model however also offers insight into the development of the profile through the inlet of the bed and the fluid redistribution, which occurs in the outlet region of the bed. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2010.
324

Finding the path: enrolling in post-secondary studies without a secondary school graduation diploma.

Smith, Andrea J. 16 January 2012 (has links)
For a distinct portion of Canadian youth, completing a high school diploma with their same-age peers is not a reality. Fortunately, opportunities exist for these individuals to later return to educational institutions to continue their formal education, thereby increasing their job prospects, wages, and quality of life. Barriers faced by these so-called “non-traditional” learners are examined through the data gathered from an anonymous survey and from focus group interviews with students who currently attend a college in western Canada. The purpose of this thesis is to illuminate the experiences and beliefs of “non-traditional” students, including how they were able to enrol in post-secondary education without a high school diploma, what barriers they actually did, or continue to, face, and what strategies and supports have been, or would be, most helpful to them as they navigate the many challenges and transitions to find their path on their educational journey. / Graduate
325

Development of Axisymmetric Drop Shape Analysis - No Apex (ADSA-NA)

Kalantarian, Ali 10 January 2012 (has links)
The main purpose of this thesis is the development of a new methodology of contact angle measurement called ADSA-NA (Axisymmetric Drop Shape Analysis - No Apex) that analyzes drop shape configurations with no apex. Thus ADSA-NA facilitates contact angle measurements on drops with a capillary protruding into the drop. This development is desirable because the original ADSA has some limitations for contact angle measurement, and there is a need for the improvement of the accuracy of contact angle measurement. To develop ADSA-NA, a new reference point other than the apex and a new set of optimization parameters different from those of ADSA had to be defined. The three main modules of ADSA had also to be modified; the image analysis, the numerical integration of the Laplace equation for generating theoretical curves, and the optimization procedure. It was shown that ADSA-NA significantly enhances the precision of contact angle and surface tension measurements (by at least a factor of 5) compared to those obtained from sessile drops using ADSA. Computational as well as design aspects of ADSA-NA were scrutinized in depth, well beyond the level of scrutiny in the original ADSA. On the computational side, the results obtained from one and the same drop image were compared using different gradient and non-gradient edge detection strategies and different gradient and non-gradient optimization methods. It was found that the difference between the results of different edge detection strategies is minimal. It was also found that all the optimization methods yield the same answer with eight significant figures for one and the same image. The determination of the location of the solid surface in the drop image was also further refined. On the design side, the effect of controllable experimental factors such as drop height and drop volume on the accuracy of surface tension measurement was studied. It was shown that drop height is the dominant experimental factor, and larger drop heights yield lower surface tension errors.
326

Development of Axisymmetric Drop Shape Analysis - No Apex (ADSA-NA)

Kalantarian, Ali 10 January 2012 (has links)
The main purpose of this thesis is the development of a new methodology of contact angle measurement called ADSA-NA (Axisymmetric Drop Shape Analysis - No Apex) that analyzes drop shape configurations with no apex. Thus ADSA-NA facilitates contact angle measurements on drops with a capillary protruding into the drop. This development is desirable because the original ADSA has some limitations for contact angle measurement, and there is a need for the improvement of the accuracy of contact angle measurement. To develop ADSA-NA, a new reference point other than the apex and a new set of optimization parameters different from those of ADSA had to be defined. The three main modules of ADSA had also to be modified; the image analysis, the numerical integration of the Laplace equation for generating theoretical curves, and the optimization procedure. It was shown that ADSA-NA significantly enhances the precision of contact angle and surface tension measurements (by at least a factor of 5) compared to those obtained from sessile drops using ADSA. Computational as well as design aspects of ADSA-NA were scrutinized in depth, well beyond the level of scrutiny in the original ADSA. On the computational side, the results obtained from one and the same drop image were compared using different gradient and non-gradient edge detection strategies and different gradient and non-gradient optimization methods. It was found that the difference between the results of different edge detection strategies is minimal. It was also found that all the optimization methods yield the same answer with eight significant figures for one and the same image. The determination of the location of the solid surface in the drop image was also further refined. On the design side, the effect of controllable experimental factors such as drop height and drop volume on the accuracy of surface tension measurement was studied. It was shown that drop height is the dominant experimental factor, and larger drop heights yield lower surface tension errors.
327

Low Velocity Impact Characterization Of Monolithic And Laminated Aa 2024 Plates By Drop Weight Test

Kalay, Yunus Emre 01 January 2003 (has links) (PDF)
The objective of this study was to investigate the low velocity impact behavior of both monolithic and laminated aluminum alloy plates. For this purpose, a drop-weight test unit was used. The test unit included the free fall and impact of an 8 kg hammer with an 8 mm punching rod from 0.5 m to 4 m. The relationship between the change in static mechanical properties (hardness, ultimate tensile strength, yield strength, strain hardening rate) and low velocity impact behavior of monolithic aluminum plates were investigated. Tested material was AA 2024, heat treatable aluminum alloy, which was artificially aged to obtain a wide range of mechanical properties. In the second stage of the study, the relationship between the low velocity impact behavior of laminated plates was compared with that of monolithic aluminum plates at identical areal densities. For this purpose, a series of AA 2024 thin plates were combined with different types of adhesives (epoxy, polyurethane or tape). Finally, fracture surface of the samples and microstructure at the deformation zone were examined with both scanning electron microscope and optical microscope. It is found that the ballistic limit velocities of AA 2024 plates increase with increase in hardness, yield strength and ultimate tensile strength. It is also found that a linear relation exists between the ballistic limit velocity and strain hardening rate or hardness. When the low velocity impact behaviors of laminated and monolithic targets were compared, it was seen that monolithic targets have a higher ballistic limit velocity values for from the 2.5 to 10 mm thick targets. It was also observed that adhesives are not so effective to strengthen the low velocity impact performance. On the other hand, with increasing Charpy impact energy, penetration and perforation behaviors are getting worse in 10 to 30 joules energy range. Different types of failure mechanisms involving, plugging, dishing, stretching and bending were determined. For high strength and thick plates plugging type deformation was leaded. In contrast, for thinner and weaker targets bending, stretching and dishing type failures were dominating. For laminated targets also dishing type failure was determined.
328

Microstructure Development in Viscoelastic Fluid Systems

Li, Huaping 11 1900 (has links)
This thesis deals with the mechanisms of microstructure development in polymer blends. Much work has been performed on the breakup process of immiscible systems where the dispersed phase is suspended inside another matrix. The fluids used were polymer melts or model viscoelastic fluids, and the processing flows were model shear flow or processing flows seen in industry. It is found that in industrial extruders or batch mixers, the morphology of the dispersed polymer evolves from pellets to films, and subsequently to fibers and particles. In this thesis, it is demonstrated based on force analysis that the in-situ graft reactive compatibilization facilitates breakup of the dispersed phase by suppressing slip at the interface of the dispersed phase and matrix phase. The morphology development of polymer blends in industrial mixers was simulated by performing experiments of model viscoelastic drop deformation and breakup under shear flow. Two distinct modes of drop deformation and breakup were observed. Namely, viscoelastic drops can elongate and breakup either in (1) the flow direction or (2) the vorticity direction. The first normal stress difference N1 plays a decisive role in the conditions and modes of drop breakup. Drop size is an important factor which determines to a great extent the mode of drop breakup and the critical point when the drop breakup mechanism changes. Small drops break along the vorticity direction, whereas large drops break in the flow direction. A dramatic change in the critical shear rate was found when going from one breakup mode to another. Polymer melts processed under shear flow present different morphology development mechanisms: films, fibers, vorticity elongation and surface instability. The mechanisms depend greatly on the rheological properties of both the dispersed and matrix phases, namely the viscosity ratio and elasticity ratio. High viscosity ratio and high elasticity ratio result elongation of the dispersed phase in the vorticity direction. Medium viscosity ratio and low elasticity ratio result in fiber morphology. Low viscosity ratio and high elasticity ratio result in film morphology. The surface instability is caused by the shear-thinning effect of the dispersed polymer. / Chemical Engineering
329

Visualization, design, and scaling of drop generation in coflow processes

Manuela Duxenneuner Unknown Date (has links)
No description available.
330

Visualization, design, and scaling of drop generation in coflow processes

Manuela Duxenneuner Unknown Date (has links)
No description available.

Page generated in 0.0302 seconds