• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Droplet Deposition in Solid Ink Printing

Li, Ri 20 January 2009 (has links)
Introduced in 1991, solid ink color printing technology is widely used in the office printing, prepress proofing, and wide format color printing markets. Ink droplets are first deposited on a rotating drum and then transferred to paper to reproduce images with high print quality. The objective of this thesis is to develop scientific knowledge of ink droplet deposition, which is needed for precise image buildup on the drum surface. The first problem studied in the thesis is droplet formation from the printhead with varied working voltages and jetting frequencies. Attention is paid to the formation of satellite droplets, the contraction of ligaments and the startup of high frequency jetting. The jetting conditions for obtaining consistent droplet generation with satellites are determined. A theoretical model is developed to predict the lifetime of ligaments. The second problem we studied is the deposition of single droplets on solid surfaces. The surface texture and final shape of deposited droplets are correlated with impact conditions, which include printhead temperature, substrate temperature, distance from printhead to substrate, and the type of substrate surface. An analytical model is developed to evaluate the interaction of oscillation and viscous damping in the droplet during impact. The third problem covered in the thesis is the deposition of multiple ink droplets on the drum surface. Interaction between droplets causes drawback effect, which degrades print quality. We define a parameter to quantify the drawback effect with varied deposition conditions. A simple model is provided to predict conditions for making continuous lines based on the results of two ink droplets deposition. To understand the hydrodynamics in causing drawback effect, a series of experiments using large liquid droplets are carried out. Focus is put on the evolution of spread length and dynamics of contact line. Correlations for maximum and minimum spread lengths are developed, which are used to reveal the cause of drawback effect in the deposition of ink droplets.
2

Droplet Deposition in Solid Ink Printing

Li, Ri 20 January 2009 (has links)
Introduced in 1991, solid ink color printing technology is widely used in the office printing, prepress proofing, and wide format color printing markets. Ink droplets are first deposited on a rotating drum and then transferred to paper to reproduce images with high print quality. The objective of this thesis is to develop scientific knowledge of ink droplet deposition, which is needed for precise image buildup on the drum surface. The first problem studied in the thesis is droplet formation from the printhead with varied working voltages and jetting frequencies. Attention is paid to the formation of satellite droplets, the contraction of ligaments and the startup of high frequency jetting. The jetting conditions for obtaining consistent droplet generation with satellites are determined. A theoretical model is developed to predict the lifetime of ligaments. The second problem we studied is the deposition of single droplets on solid surfaces. The surface texture and final shape of deposited droplets are correlated with impact conditions, which include printhead temperature, substrate temperature, distance from printhead to substrate, and the type of substrate surface. An analytical model is developed to evaluate the interaction of oscillation and viscous damping in the droplet during impact. The third problem covered in the thesis is the deposition of multiple ink droplets on the drum surface. Interaction between droplets causes drawback effect, which degrades print quality. We define a parameter to quantify the drawback effect with varied deposition conditions. A simple model is provided to predict conditions for making continuous lines based on the results of two ink droplets deposition. To understand the hydrodynamics in causing drawback effect, a series of experiments using large liquid droplets are carried out. Focus is put on the evolution of spread length and dynamics of contact line. Correlations for maximum and minimum spread lengths are developed, which are used to reveal the cause of drawback effect in the deposition of ink droplets.
3

Surface Charge Heterogeneities and Shear-Induced Coalescence of Bitumen Droplets

Lin, Feng Unknown Date
No description available.
4

Characterization and Prediction of Water Droplet Size in Oil-Water Flow

Yao, Juncheng 23 September 2016 (has links)
No description available.
5

Theoretical and numerical study of collision and coalescence - Statistical modeling approaches in gas-droplet turbulent flows / Étude théorique et numérique de collision et coalescence - Approches statistiques de la modélisation des écoulements turbulents gaz-gouttes

Wunsch, Dirk 16 December 2009 (has links)
Ce travail consiste en une étude des phénomènes de coalescence dans un nuage de gouttes, par la simulation numérique directe d'un écoulement turbulent gazeux, couplée avec une approche de suivi Lagrangien pour la phase dispersée. La première étape consiste à développer et valider une méthode de détection des collisions pour une phase polydispersée. Elle est ensuite implémentée dans un code couplé de simulation directe et de suivi Lagrangien existant. Des simulations sont menées pour une turbulence homogène isotrope de la phase continue et pour des phases dispersées en équilibre avec le fluide. L'influence de l'inertie des gouttes et de la turbulence sur le taux de coalescence des gouttes est discutée dans un régime de coalescence permanente. Un aperçu est donné de la prise en compte d'autres régimes de collision et de coalescence entre gouttes. Ces simulations sont la base de développement et de validation des approches utilisées dans les calculs à l'échelle industrielle. En particulier, les résultats des simulations sont comparés avec les prédictions d'une approche Lagrangienne de type Monte-Carlo et de l'approche Eulerienne 'Direct Quadrature Method of Moments' (DQMOM). Différents types de fermeture des termes de coalescence sont validés. Les uns sont basés sur l'hypothèse de chaos-moléculaire, les autres sont capables de prendre en compte des corrélations de vitesses des gouttes avant la collision. Il est montré que cette derniere approche prédit beaucoup mieux le taux de coalescence par comparaison avec les résultats des simulations déterministes. / Coalescence in a droplet cloud is studied in this work by means of direct numerical simulation of the turbulent gas flow, which is coupled with a Lagrangian tracking of the disperse phase. In a first step, a collision detection algorithm is developed and validated, which can account for a polydisperse phase. This algorithm is then implemented into an existing code for direct numerical simulations coupled with a Lagrangian tracking scheme. Second, simulations are performed for the configuration of homogeneous isotropic turbulence of the fluid phase and a disperse phase in local equilibrium with the fluid. The influence of both droplet inertia and turbulence intensity on the coalescence rate of droplets is discussed in a pure permanent coalescence regime. First results are given, if other droplet collision outcomes than permanent coalescence (i.e. stretching and reflexive separation) are considered. These results show a strong dependence on the droplet inertia via the relative velocity of the colliding droplets at the moment of collision. The performed simulations serve also as reference data base for the development and validation of statistical modeling approaches, which can be used for simulations of industrial problems. In particular, the simulation results are compared to predictions from a Lagrangian Monte-Carlo type approach and the Eulerian 'Direct Quadrature Method of Moments' (DQMOM) approach. Different closures are validated for the coalescence terms in these approaches, which are based either on the assumption of molecular-chaos, or based on a formulation, which allows to account for the correlation of droplet velocities before collision by the fluid turbulence. It is shown that the latter predicts much better the coalescence rates in comparison with results obtained by the performed deterministic simulations.
6

Multifunktionsfeldeffekttransistoren zur Strömungs-, Chemo- und Biosensorik in Lab on a Chip-Systemen

Truman Sutanto, Pagra 09 January 2008 (has links) (PDF)
In dieser Arbeit wird eine neue Methode und ein neuartiges FET -Sensorelement zum Nachweis von Flüssigkeitsbewegungen vorgestellt, das zudem bei Bedarf auch als Chemo- oder Biosensor fungieren kann. Das Einsatzspektrum von FET-basierten Sensoren in Lab on a Chip-Systemen wird dadurch entscheidend erweitert. Bei dem entwickelten FET-Sensor Bauelement handelt es sich um einen normally-on n-leitenden Dünnschichtfeldeffekttransistor mit Ti-Au-Kontakten, basierend auf Silicon-on-Insulator- Substraten, wobei das natürliche Oxid des Siliziumfilms als Schnittstelle zum Elektrolyten bzw. zur Flüssigkeit verwendet wird. Der mit 10exp16 Bor Atomen pro cm³ p-dotierte Siliziumdünnfilm hat eine Dicke von nur 55 nm und ist durch eine 95 nm dicke Siliziumdioxidschicht vom darunterliegenden Siliziumsubstrat von 600 µm Dicke elektrisch isoliert. Aufgrund der geringen Schichtdicke durchdringt die feldempfindliche Raumladungs- bzw. Verarmungszone die gesamte Dünnschicht, so dass durch Anlegen einer Backgatespannung am Substrat der spezifische Widerstand und die Empfindlichkeit des Bauelements eingestellt werden können. Grundlegende ISFET-Funktionalitäten wie die Empfindlichkeit auf Änderungen der Ionenstärke und des pH-Wertes werden nachgewiesen und ein ENFET-Glukosesensor realisiert. Zudem wird im Hinblick auf die Separation von Emulsionen der Nachweis erbracht, dass die Benetzung mit Hexan und Toluol eine Änderung der spezifischen Leitfähigkeit bewirkt, und die Empfindlichkeit des Bauelements nach Beschichtung mit einem hydrophoben Methacrylatcopolymerfilm erhalten bleibt. Hinsichtlich der Verwendung des FET-Sensor Bauelements zum Nachweis von Flüssigkeitsbewegungen wird zunächst ein theoretisches Modell entwickelt, dessen Kernaussage ist, dass sich in einem rechteckigen Kanal der relative Bedeckungsgrad mit Flüssigkeit direkt proportional zum Drainstrom des FET-Sensors verhält. Basierend auf diesem theoretischen Modell, welches experimentell belegt wird, können mittels eines einzelnen FET-Sensors Füllstand und Füllgeschwindigkeit bzw. bei bekannter Füllgeschwindigkeit Kapillarvolumen und Kapillargeometrie bestimmt werden. Abweichungen von der direkten Proportionalität erlauben zudem, Rückschlüsse auf die Benetzungseigenschaften der Kapillaren und die Dynamik an der Halbleitergrenzfläche zu ziehen. Ist ein Sensorelement vollständig mit Flüssigkeit bedeckt, wird mittels Lösungsmitteltropfen als Markerobjekten die Strömungsgeschwindigkeit bestimmt. Ändert sich die Ionenkonzentration im Elektrolyten als Funktion der Strömungsgeschwindigkeit, so kann die Strömungsgeschwindigkeit durch Messung der Ionenkonzentration mittels FET-Sensor ebenfalls ermittelt werden. Als wichtigster Demonstrator für die Verwendung des FET-Sensors wird ein komplexes Lab on a Chip-System zur Separation von Emulsionen auf chemisch strukturierten Oberflächen entwickelt, bei dem der Separationsvorgang mittels FET-Sensorarray verfolgt werden kann. Zur einfachen Herstellung chemisch modifizierter Oberflächen für die Separationsexperimente werden die Abscheidung von nanoskaligen hydrophoben Methacrylatcopolymerfilmen und die selektive Fluorsilanisierung von Oberflächen sowie deren Lösungsmittelbeständigkeit in Wasser, Toluol und Aceton untersucht. Dabei zeigt sich, dass die Hydrophobie nach Lösungsmittelbehandlung weitestgehend erhalten bleibt, Wasserrückstände im Methacrylatfilm aber zu einer reversiblen Schichtdegradation führen können. Als Modellsystem werden Hexan-Wasser- bzw. Toluol-Wasser-Emulsionen verwendet, die auf Oberflächen getrennt werden, deren eine Seite hydrophil, und deren andere Seite hydrophob ist (Stufengradient). Der Separationsprozess beruht auf der großen Affinität des Wassers hin zu polaren Oberflächen, wobei das wenig selektive Lösungsmittel zur unpolaren Seite gedrängt wird. Zur Erlangung eines tieferen Verständnisses des Prozesses werden die Tropfenkoaleszenz und der Einfluss geometrischer Beschränkungen untersucht. Die Versuche werden sowohl auf offenen Oberflächen als auch im Spalt, unter Verwendung von hydrophilen und hydrophoben Oberflächen, durchgeführt. Es zeigt sich, dass sich die Dynamik der Tropfenkoaleszenz im Spalt umgekehrt zur Dynamik auf offenen Oberflächen verhält. Dies wird mittels eines hierzu entwickelten theoretischen Modells erklärt, welches die Minimierung der Oberflächenenergie und Hystereseeffekte einbezieht. Das Lab on a Chip-System schließlich besteht aus einem mit Siliziumnitrid beschichteten FET-Sensorchip, auf den eine Separationszelle aufgeklebt ist. Neben dem Einlass für die Emulsion ist ein weiterer Einlass vorhanden, durch den Salzsäure für eine pH-Reaktion zugegeben werden kann. Der gesamte Separationsprozess sowie die anschließende pH-Reaktion, lassen sich bequem am PC anhand der Änderung der Stromstärke der einzelnen Sensoren verfolgen und analysieren. Wichtige Ergebnisse hier sind: 1) Mittels eines quasi 1-dimensionalen Sensorarrays kann der Verlauf einer Flüssigkeitsfront in einem 2-dimensionalen Areal überwacht bzw. dargestellt werden. 2) Anhand der Signatur des Signalverlaufs bei pH-Änderung und Flüssigkeitsbewegung, können beide Prozesse unterschieden werden. Der Sensor kann also zum Nachweis von Flüssigkeitsbewegungen und zugleich als Chemosensor eingesetzt werden. Es wurde also nicht nur ein neuartiges, äußerst robustes, chemikalienbeständiges und biokompatibles Multifunktionssensorelement mit Abmessungen im Mikrometer- bis Millimeterbereich entwickelt, sondern auch eine neue Methode entwickelt, mit der es möglich ist, sowohl (bio-)chemische Reaktionen als auch die Bewegung von Flüssigkeiten in Lab on a Chip-Systemen nachzuweisen.
7

Multifunktionsfeldeffekttransistoren zur Strömungs-, Chemo- und Biosensorik in Lab on a Chip-Systemen

Truman Sutanto, Pagra 14 December 2007 (has links)
In dieser Arbeit wird eine neue Methode und ein neuartiges FET -Sensorelement zum Nachweis von Flüssigkeitsbewegungen vorgestellt, das zudem bei Bedarf auch als Chemo- oder Biosensor fungieren kann. Das Einsatzspektrum von FET-basierten Sensoren in Lab on a Chip-Systemen wird dadurch entscheidend erweitert. Bei dem entwickelten FET-Sensor Bauelement handelt es sich um einen normally-on n-leitenden Dünnschichtfeldeffekttransistor mit Ti-Au-Kontakten, basierend auf Silicon-on-Insulator- Substraten, wobei das natürliche Oxid des Siliziumfilms als Schnittstelle zum Elektrolyten bzw. zur Flüssigkeit verwendet wird. Der mit 10exp16 Bor Atomen pro cm³ p-dotierte Siliziumdünnfilm hat eine Dicke von nur 55 nm und ist durch eine 95 nm dicke Siliziumdioxidschicht vom darunterliegenden Siliziumsubstrat von 600 µm Dicke elektrisch isoliert. Aufgrund der geringen Schichtdicke durchdringt die feldempfindliche Raumladungs- bzw. Verarmungszone die gesamte Dünnschicht, so dass durch Anlegen einer Backgatespannung am Substrat der spezifische Widerstand und die Empfindlichkeit des Bauelements eingestellt werden können. Grundlegende ISFET-Funktionalitäten wie die Empfindlichkeit auf Änderungen der Ionenstärke und des pH-Wertes werden nachgewiesen und ein ENFET-Glukosesensor realisiert. Zudem wird im Hinblick auf die Separation von Emulsionen der Nachweis erbracht, dass die Benetzung mit Hexan und Toluol eine Änderung der spezifischen Leitfähigkeit bewirkt, und die Empfindlichkeit des Bauelements nach Beschichtung mit einem hydrophoben Methacrylatcopolymerfilm erhalten bleibt. Hinsichtlich der Verwendung des FET-Sensor Bauelements zum Nachweis von Flüssigkeitsbewegungen wird zunächst ein theoretisches Modell entwickelt, dessen Kernaussage ist, dass sich in einem rechteckigen Kanal der relative Bedeckungsgrad mit Flüssigkeit direkt proportional zum Drainstrom des FET-Sensors verhält. Basierend auf diesem theoretischen Modell, welches experimentell belegt wird, können mittels eines einzelnen FET-Sensors Füllstand und Füllgeschwindigkeit bzw. bei bekannter Füllgeschwindigkeit Kapillarvolumen und Kapillargeometrie bestimmt werden. Abweichungen von der direkten Proportionalität erlauben zudem, Rückschlüsse auf die Benetzungseigenschaften der Kapillaren und die Dynamik an der Halbleitergrenzfläche zu ziehen. Ist ein Sensorelement vollständig mit Flüssigkeit bedeckt, wird mittels Lösungsmitteltropfen als Markerobjekten die Strömungsgeschwindigkeit bestimmt. Ändert sich die Ionenkonzentration im Elektrolyten als Funktion der Strömungsgeschwindigkeit, so kann die Strömungsgeschwindigkeit durch Messung der Ionenkonzentration mittels FET-Sensor ebenfalls ermittelt werden. Als wichtigster Demonstrator für die Verwendung des FET-Sensors wird ein komplexes Lab on a Chip-System zur Separation von Emulsionen auf chemisch strukturierten Oberflächen entwickelt, bei dem der Separationsvorgang mittels FET-Sensorarray verfolgt werden kann. Zur einfachen Herstellung chemisch modifizierter Oberflächen für die Separationsexperimente werden die Abscheidung von nanoskaligen hydrophoben Methacrylatcopolymerfilmen und die selektive Fluorsilanisierung von Oberflächen sowie deren Lösungsmittelbeständigkeit in Wasser, Toluol und Aceton untersucht. Dabei zeigt sich, dass die Hydrophobie nach Lösungsmittelbehandlung weitestgehend erhalten bleibt, Wasserrückstände im Methacrylatfilm aber zu einer reversiblen Schichtdegradation führen können. Als Modellsystem werden Hexan-Wasser- bzw. Toluol-Wasser-Emulsionen verwendet, die auf Oberflächen getrennt werden, deren eine Seite hydrophil, und deren andere Seite hydrophob ist (Stufengradient). Der Separationsprozess beruht auf der großen Affinität des Wassers hin zu polaren Oberflächen, wobei das wenig selektive Lösungsmittel zur unpolaren Seite gedrängt wird. Zur Erlangung eines tieferen Verständnisses des Prozesses werden die Tropfenkoaleszenz und der Einfluss geometrischer Beschränkungen untersucht. Die Versuche werden sowohl auf offenen Oberflächen als auch im Spalt, unter Verwendung von hydrophilen und hydrophoben Oberflächen, durchgeführt. Es zeigt sich, dass sich die Dynamik der Tropfenkoaleszenz im Spalt umgekehrt zur Dynamik auf offenen Oberflächen verhält. Dies wird mittels eines hierzu entwickelten theoretischen Modells erklärt, welches die Minimierung der Oberflächenenergie und Hystereseeffekte einbezieht. Das Lab on a Chip-System schließlich besteht aus einem mit Siliziumnitrid beschichteten FET-Sensorchip, auf den eine Separationszelle aufgeklebt ist. Neben dem Einlass für die Emulsion ist ein weiterer Einlass vorhanden, durch den Salzsäure für eine pH-Reaktion zugegeben werden kann. Der gesamte Separationsprozess sowie die anschließende pH-Reaktion, lassen sich bequem am PC anhand der Änderung der Stromstärke der einzelnen Sensoren verfolgen und analysieren. Wichtige Ergebnisse hier sind: 1) Mittels eines quasi 1-dimensionalen Sensorarrays kann der Verlauf einer Flüssigkeitsfront in einem 2-dimensionalen Areal überwacht bzw. dargestellt werden. 2) Anhand der Signatur des Signalverlaufs bei pH-Änderung und Flüssigkeitsbewegung, können beide Prozesse unterschieden werden. Der Sensor kann also zum Nachweis von Flüssigkeitsbewegungen und zugleich als Chemosensor eingesetzt werden. Es wurde also nicht nur ein neuartiges, äußerst robustes, chemikalienbeständiges und biokompatibles Multifunktionssensorelement mit Abmessungen im Mikrometer- bis Millimeterbereich entwickelt, sondern auch eine neue Methode entwickelt, mit der es möglich ist, sowohl (bio-)chemische Reaktionen als auch die Bewegung von Flüssigkeiten in Lab on a Chip-Systemen nachzuweisen.

Page generated in 0.0851 seconds