• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fitness and transmission of a selfish X chromosome in female Drosophila testacea

Powell, Candice 26 May 2021 (has links)
Selfish genetic elements break the rules of Mendelian inheritance to bias their transmission to following generations, often with negative fitness consequences. A striking example involves selfish X chromosomes that operate in males and interfere with the production of sperm that carry a Y chromosome. Only X chromosome-bearing sperm are produced, and this can result in extraordinary female-biased sex-ratio distortions. Most studies have focused on how selfish X chromosomes operate in and affect males, and there has been relatively little work on their consequences in females. In this thesis, I characterize fitness effects and transmission in females, in a recently discovered selfish X chromosome system in Drosophila testacea, a common woodland fly. I show that females with two copies of the selfish X chromosome have reduced fitness compared to females carrying zero, or one copy. Specifically, these females have a lower hatch rate and lifetime fecundity. Additionally, I show that heterozygous females are more likely to transmit the selfish X chromosome than the wildtype copy to their offspring. I observe this transmission bias in eggs, larvae, and adults, which suggests that the selfish X chromosome is preferentially segregating into the egg, rather than the polar bodies, during oogenesis. We believe this is the first documented case of a selfish X chromosome acting through both sexes. The negative fitness effects and the biased transmission in males and females will have important consequences on the evolutionary dynamics of the selfish X chromosome. In addition, the phenomenon of biased transmission in both sexes has the potential to yield interesting insights in the mechanism of meiotic drive. / Graduate / 2022-05-12

Page generated in 0.0675 seconds