• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 8
  • 8
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification and characterization of meiotic drive within the Drosophila virilis subgroup

Stewart, Nicholas 01 August 2017 (has links)
There is a vast diversity of karyotypes in nature, yet mechanisms that have facilitated such diversity are unclear. Alterations to an organism’s karyotype can have major negative fitness consequences in meiosis through non-disjunction and aneuploidy. Here, I investigated the role of biased segregation in female meiosis, i.e., meiotic drive, as a force that contributes to the evolution of karyotype form. The closely related species pair, Drosophila americana and Drosophila novamexicana, is an exemplar for understanding mechanisms of karyotype evolution. Since their recent divergence nearly half a million years ago, D. americana has evolved two different centromeric fusions: one fusion between the 2nd and 3rd chromosomes (Muller elements C and D), and the other fusion between the X and 4th chromosomes (Muller elements A and B). The 2-3 fusion is fixed in D. americana. However, the X-4 centromeric fusion remains polymorphic within the species. I uncovered biased transmissions for both fused chromosomes in D. americana such that the X-4 fused chromosome was inherited by 57% of the offspring from heterozygous females and the 2-3 chromosome was inherited by 62% of the offspring. Introgression experiments shoed the fused X-4 and the unfused X and 4th chromosomes are segregating at a 50/50 ratio in D. novamexicana. I have isolated the fused X-4 centromeric region as a possible player in the observed meiotic drive. However, the centromere is not sufficient to cause meiotic drive without a secondary factor. I also measured heterochromatin content between the fused and unfused X and 4th homologs. No obvious size differences were uncovered, but possible compositional differences were revealed. This suggests that if the centromere itself is involved in meiotic drive, either differences in the number of centromeres or compositional differences between the centromeres are influencing meiotic drive. Overall, I have identified and characterized meiotic drive as a force driving karyotype evolution in D. americana but appears to be absent in D. novamexicana, and I have begun to dissect the mechanisms of meiotic drive.
2

Nature, fonction et évolution d’un élément génétique égoïste chez Drosophila simulans / Identification and characterization of a meiotic driver in Drosophila simulans

Helleu, Quentin 26 November 2015 (has links)
Les distorteurs de ségrégation méiotiques sont des éléments génétiques égoïstes qui favorisent leur propre transmission en manipulant la méiose à leur avantage. La diffusion dans les populations d’un distorteur lié au chromosome X (Sex-Ratio) provoque un excès de femelles et cela conduit à un conflit entre le chromosome X et les autres chromosomes. Ces conflits intra-génomiques sont d’importants moteurs de l’évolution des génomes. Mais, peu de choses sont connues sur la nature moléculaire et la fonction des éléments égoïstes Sex-Ratio. Le premier chapitre de cette thèse présente une synthèse actualisée sur les distorteurs de ségrégation méiotiques liés à un chromosome sexuel. Le second chapitre est consacré à l’identification et la caractérisation d’un élément distorteur du système Sex-Ratio « Paris » de Drosophila simulans, dans lequel deux éléments distorteurs liés au chromosome X provoquent ensemble la misségrégation des chromatides sœurs du chromosome Y lors de la méiose II. J’identifie à travers une cartographie génétique par recombinaison un des loci distorteur et je conduis une validation fonctionnelle de son implication dans la distorsion. Il s’agit d’un jeune gène qui évolue rapidement et appartient à une famille de gènes bien connus, impliquée dans la constitution de l’hétérochromatine. Ce gène a émergé par duplication il y a environ 15-22 millions d’années et a connu de façon indépendante de multiples duplications en cis, pseudogenizations, ou bien directement sa perte tout au long de son histoire évolutive. Cela suggère que ce gène pourrait avoir été impliquée dans de multiples conflits génétiques. Le dernier chapitre est consacré à une étude exploratoire de la diversité structurale des chromosomes Y en relation avec la distorsion de ségrégation méiotique du système « Paris ». Les résultats présentés dans ce manuscrit contribuent à augmenter les connaissances sur l’origine moléculaire des conflits génétiques et sur leur impact évolutif. / Segregation distorters are selfish genetic elements that promote their own transmission by subverting the meiotic process to their advantage. The spread of an X-linked distorter (Sex-Ratio) in populations results in an excess of females, which triggers a genetic conflict between the X chromosome and the rest of the genome. Such conflicts are important drivers of genome evolution, but little is known about the molecular nature and the function of the Sex Ratio selfish elements. The first chapter of this manuscript is a review of the current knowledge about X-linked segregation distorters. Then, I present my work on the « Paris » Sex Ratio system of Drosophila simulans, in which two distorter elements on the X chromosome co-operate to prevent Y chromosome sister chromatids segregation during meiosis II. I mapped a gene in one of the distorter loci and achieved the functional validation of its involvement in sex-ratio distortion. It is a young and rapidly evolving gene that belongs to a well-known gene family involved in chromatin state regulation. It emerged through duplication about 15-22 Myrs ago and has experienced multiple independant cis-duplications, loss or pseudogenization throughout its evolutionary history. This suggests that this gene could have been involved in multiple genetic conflicts. Finally, the last chapter is about an opening study of the strucural diversity of Y chromosomes in relation to « Paris » segregation distorter. These findings should help understanding the molecular basis of genetic conflicts and the evolutionary impact of heterochromatin regulation during meiosis.
3

Fitness and transmission of a selfish X chromosome in female Drosophila testacea

Powell, Candice 26 May 2021 (has links)
Selfish genetic elements break the rules of Mendelian inheritance to bias their transmission to following generations, often with negative fitness consequences. A striking example involves selfish X chromosomes that operate in males and interfere with the production of sperm that carry a Y chromosome. Only X chromosome-bearing sperm are produced, and this can result in extraordinary female-biased sex-ratio distortions. Most studies have focused on how selfish X chromosomes operate in and affect males, and there has been relatively little work on their consequences in females. In this thesis, I characterize fitness effects and transmission in females, in a recently discovered selfish X chromosome system in Drosophila testacea, a common woodland fly. I show that females with two copies of the selfish X chromosome have reduced fitness compared to females carrying zero, or one copy. Specifically, these females have a lower hatch rate and lifetime fecundity. Additionally, I show that heterozygous females are more likely to transmit the selfish X chromosome than the wildtype copy to their offspring. I observe this transmission bias in eggs, larvae, and adults, which suggests that the selfish X chromosome is preferentially segregating into the egg, rather than the polar bodies, during oogenesis. We believe this is the first documented case of a selfish X chromosome acting through both sexes. The negative fitness effects and the biased transmission in males and females will have important consequences on the evolutionary dynamics of the selfish X chromosome. In addition, the phenomenon of biased transmission in both sexes has the potential to yield interesting insights in the mechanism of meiotic drive. / Graduate / 2022-05-12
4

Hybrid Sterility and Segregation Distortion in Drosophila pseudoobscura and Drosophila persimilis

McDermott, Shannon January 2012 (has links)
<p>Speciation has occurred countless times throughout history, and yet the genetic mechanisms that lead to speciation are still missing pieces. Here, we describe the genetics of two processes that can act alone or together to cause speciation: hybrid sterility and meiotic drive. We use the <italic>Drosophila pseudoobscura/D, persimilis</italic> species as a model system to study these processes. We expanded on a prior study and saw little variation in strength of previously known hybrid sterility alleles between distinct strains of <italic>D. persimilis</italic> and the Bogota subspecies of <italic>D. pseudoobscura</italic>. Introgression of an autosomal, noninverted hybrid sterility allele from the USA subspecies of <italic>D. pseudoobscura</italic> into <italic>D. persimilis</italic> demonstrated that the <italic>D. pseudoobscura</italic> copy of a <italic>D. persimilis</italic> hybrid sterility factor also causes hybrid male sterility in a <italic>D. pseudoobscura bogotana</italic> background. This allelism suggests that the introgressed allele is ancestral, but was lost in the Bogota lineage, or that gene flow between <italic>D. pseudoobscura</italic> USA and <italic>D. persimilis</italic> moved the sterility-conferring allele from <italic>D. persimilis</italic> into <italic>D. pseudoobscura</italic>. To further understand the genetic basis of speciation, we asked if meiotic drive in <italic>D. persimilis</italic> is associated with hybrid sterility seen in <italic>D. persimilis/D. pseudoobscura</italic> hybrids. QTL mapping of both traits along the right arm of the X chromosome, where both drive and hybrid sterility loci are found, suggest that some of the causal loci overlap and may be allelic.</p> / Dissertation
5

X chromosome drive in Drosophila testacea

Keais, Graeme 01 May 2018 (has links)
Selfish genes that bias their own transmission during gametogenesis can spread rapidly in populations, even if they contribute negatively to the fitness of their host. Driving X chromosomes provide a clear example of this type of selfish propagation. These chromosomes, which are found in a broad range of taxa including plants, mammals, and insects, can have important evolutionary and ecological consequences. In this thesis, I report a new case of X chromosome drive (X drive) in a widespread woodland fly, Drosophila testacea. I show that males carrying the driving X (SR males) sire 80-100% female offspring, and that the majority of sons produced by SR males are sterile and appear to lack a Y chromosome. This suggests that meiotic defects involving the Y chromosome may underlie X drive in this species. Abnormalities in sperm cysts of SR males reflect that some spermatids are failing to develop properly, confirming that drive is acting during gametogenesis. Further, I show that SR males possess a diagnostic X chromosome haplotype that is perfectly associated with the sex ratio distortion phenotype. Phylogenetic analysis of X-linked sequences from D. testacea and related species strongly suggests that the driving X arose prior to the split of D. testacea and its sister species, D. neotestacea and D. orientacea. Suppressed recombination between the XST and XSR due to inversions on the XSR likely explains their disparate evolutionary histories. By screening wild-caught flies using progeny sex ratios and a diagnostic X-linked marker, I demonstrate that the driving X is present in wild populations at a frequency of ~10% and that autosomal suppressors of drive are segregating in the same population. Both SR males and homozygous females for the driving X have reduced fertility, which helps to explain the persistence of the driving X over evolutionary timescales. The testacea species group appears to be a hotspot for X drive, and D. testacea is a promising model to compare driving X chromosomes in closely related species, some of which may even be younger than the chromosomes themselves. / Graduate / 2019-04-16
6

Bases génétiques et évolution du conflit génétique induit par la distorsion de ségrégation des chromosomes sexuels chez Drosophila simulans / Genetic bases and evolution of the genetic conflict caused by sex chromosome segregation distortion in Drosophila simulans

Courret, Cécile 02 December 2019 (has links)
La distorsion de ségrégation méiotique est une entorse à la loi de ségrégation équilibrée des allèles via les gamètes. Les gènes ou éléments génétiques causaux (distorteurs de ségrégation) empêchent, chez les hétérozygotes, la production de gamètes qui ne les contiennent pas. Ils peuvent ainsi se répandre dans les populations même s’ils sont délétères pour les individus porteurs.Parce qu'ils induisent un biais du sexe ratio, les distorteurs liés au sexe et s'exprimant dans le sexe hétérogamétique sont générateurs de conflits intragénomiques, caractérisés par l'évolution de suppresseurs qui tendent à rétablir l'équilibre des sexes. Ce processus peut conduire à l’émergence de nouvelles espèces, à l’évolution du comportement reproducteur ou du déterminisme du sexe.Dans l'espèce Drosophila simulans, des distorteurs liés au chromosome X, perturbent la ségrégation du chromosome Y lors de la méiose mâle. La descendance des mâles porteurs est alors très majoritairement femelle. Un de ces éléments distorteurs, le gène HP1D2, code une protéine qui se lie au chromosome Y avant la méiose. La distorsion est le fait d'allèles dysfonctionnels de HP1D2 (qui ont un faible niveau de transcrits testiculaires et/ou ont une délétion du domaine d’interaction protéine-protéine). Dans les populations naturelles envahies par les distorteurs, ceux-ci se trouvent neutralisés par des suppresseurs autosomaux et des chromosomes Y résistants.Le premier volet de ma thèse a été consacré au déterminisme génétique de la suppression autosomale. Par cartographie de QTL, utilisant des lignées recombinantes consanguines, j'ai révélé la complexité de ce déterminisme : 5 QTLs avec de nombreuses relation d’épistasie.Le deuxième volet est consacré au chromosome Y, qui présente, d’importante variations phénotypiques pour la résistance aux distorteurs. Nous avons étudié ses variations moléculaires et structurales et la dynamique des Y résistants dans les populations naturelles. Le séquençage de différents chromosomes Y, résistants ou sensibles, a permis de retracer l’histoire évolutive du chromosome Y en relation avec celle des distorteurs.Le dernier volet est une étude cytologique pour comparer le comportement des formes sauvages et distortrices de la protéine HP1D2 dans les spermatogonies.Dans l’ensemble ces travaux apportent un éclairage sur les bases génétiques et moléculaires du système Paris et sur son évolution. / Meiotic drive is an infringement of the law of allele segregation into the gametes. In heterozygote individuals, the causal genes or genetic elements (meiotic drivers), prevent the production of gamete which does not contain it. Thus, they can spread through populations even if they are deleterious for the carriers.Because they induce sex-ratio bias, sex-linked drivers that are expressed in the heterogametic sex, are an important source of genetic conflict, characterized by the evolution of suppressor which tends to restore a balanced sex ratio. This process can lead to the emergence of new species, evolution of reproductive behavior or sex determination.In Drosophila simulans, X-linked meiotic drivers disturb the segregation of the Y chromosome during male meiosis. The progeny of carrier male is mainly composed of females. One of the drivers is the HP1D2 gene, which encodes a protein that binds to the heterochromatic Y chromosome. The distortion is due to dysfunctional alleles of HP1D2 (low level of expression and/or a deletion of its protein-protein interaction domain). In natural populations where the drivers have spread, they are neutralized by autosomal suppressors and resistant Y chromosomes.The first part of my thesis was focus on the genetic determinism of autosomal suppression. I performed a QTL mapping using recombinant inbreed lines which highlighted the complexity of the genetic determinism of suppression: 5 QTLs and multiple epistatic interaction.The second part is about the Y chromosome, which show important phenotypic variation in the resistance of Y chromosomes to the driver. We studied its molecular and structural variation and the dynamic of resistant Y chromosomes in natural population. The sequencing of different Y chromosomes, sensitive and resistant, allowed us to retrace the evolutionary history of the Y chromosome related to the one of the driver.The last part is a cytological study to compare the localization of the functional and the driver form of HP1D2 in spermatogonia.Generally, results presented here give a better insight regarding the genetic bases and the evolution of the multiple actors of the Paris sex ratio system.
7

Catching the Spore killers : Genomic conflict and genome evolution in Neurospora

Svedberg, Jesper January 2017 (has links)
A genome is shaped by many different forces. Recombination can for instance both create and maintain genetic diversity, but the need to locally reduce recombination rates will also leave specific signatures. Genetic elements can act selfishly and spreading at the expense of the rest of the genome can leave marks of their activity, as can mechanisms that suppresses them, in a phenomenon known as genomic conflict. In this thesis, I have studied the forces driving genome evolution, using modern genome sequencing techniques and with a special focus on a class of selfish genetic elements known as Spore killers found in the fungus Neurospora. First, we show novel findings on large-scale suppression of recombination by non-structural means in the N. tetrasperma genomes. In contrary, in the genomic region harbouring the spore killer elements Sk-2 and Sk-3 of N. intermedia, a dense set of inversions that are interspersed with transposable elements have accumulated. The inversions are unique for each killer type, showing that they have a long separated evolutionary history and likely have established themselves independently. For the Sk-2 haplotype, where we have polymorphism data, we see signs of relaxed selection, which is consistent with the hypothesis that recombination suppression reduces the efficacy of selection in this region. These results show the strong effects the divergent selective forces of genomic conflicts can have on chromosome architecture. Furthermore, we investigate the hypothesis that spore killing can drive reproductive isolation, by comparing the fertility of crosses between N. metzenbergii and either killer or non-killer N. intermedia strains. We show that crosses with spore killer strains have lower fertility, which cannot be explained by the killing itself, but is potentially caused by an incompatibility gene captured in the non-recombining region. Finally, we identified the genetic element responsible for causing spore killing in the Sk-1 spore killer strains found in N. sitophila. Unlike the Sk-2 and Sk-3 elements, Sk-1 is not connected to a large, non-recombining region, but is caused by a single locus, and we also find indications that this locus was introgressed from N. hispaniola.
8

The evolutionary mechanisms promoting sex chromosome divergence within <i>Carica papaya</i>

Brown, Jennifer Erin 04 December 2013 (has links)
No description available.

Page generated in 0.047 seconds