• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental and analytical studies of hydrocarbon yields under dry-, steam-, and steam with propane-distillation

Ramirez Garnica, Marco Antonio 30 September 2004 (has links)
Recent experimental and simulation studies -conducted at the Department of Petroleum Engineering at Texas A&M University - confirm oil production is accelerated when propane is used as an additive during steam injection. To better understand this phenomenon, distillation experiments were performed using seven-component synthetic oil consisting of equal weights of the following alkanes: n-C5, n-C6, n-C7, n-C8, n-C9, nC10, and n-C15. For comparison purposes, three distillation processes were investigated: dry-, steam-, and steam-propane-distillation, the latter at a propane:steam mass ratio of 0.05. The injection rate of nitrogen during dry-and steam-distillation was the same as that of propane during steam-propane distillation, 0.025 g/min, with steam injection rate kept at 0.5 g/min. The distillation temperatures ranged from 115°C to 300°C and were increased in steps of 10°C. The cell was kept at each temperature plateau (cut) for 30 minutes. Distillation pressures ranged from 0 psig for dry distillation to 998 psig for steam-and steam-propane distillation. The temperature-pressure combination used represented 15°C superheated steam conditions. Distillate samples were collected at each cut, and the volume and weight of water and hydrocarbon measured. In addition, the composition of the hydrocarbon distillate was measured using a gas chromatograph. Main results of the study may be summarized as follows. First, the hydrocarbon yield at 125°C is highest with steam-propane distillation (74 wt%) compared to steam distillation (58 wt%), and lowest with dry distillation (36 wt%). This explains in part the oil production acceleration observed in steam-propane displacement experiments. Second, the final hydrocarbon yield at 300°C however is the same for the three distillation processes. This observation is in line with the fact that oil recoveries were very similar in steam- and steam-propane displacement experiments. Third, based on the yields of individual hydrocarbon components, steam-propane distillation lowers the apparent boiling points of the hydrocarbons significantly. This phenomenon may be the most fundamental effect of propane on hydrocarbon distillation, which results in a higher yield during steam-propane distillation and oil production acceleration during steam-propane displacement. Fourth, experimental K-values are higher in distillations with steam-propane for the components n-hexane, n-heptane, n-octane, and n-nonane. Fifth, vapor fugacity coefficients for each component are higher in distillations with steam-propane than with steam. Finally, Gibbs excess energy is overall lower in distillations with steam-propane than with steam. The experimental results clearly indicate the importance of distillation on oil recovery during steam-or steam-propane injection. The experimental procedure and method of analysis developed in this study (for synthetic oil) will be beneficial to future researchers in understanding the effect of propane as steam additive on actual crude oils.
2

Production of Radiobromide: new Nickel Selenide target and optimized separation by dry distillation

Breunig, K., Spahn, I., Spellerberg, S., Scholten, B., Coenen, H. H. 19 May 2015 (has links) (PDF)
Introduction Radioisotopes of bromine are of special interest for nuclear medical applications. The positron emitting isotopes 75Br (T½ = 1.6 h; β+ = 75.5 %) and 76Br (T½ = 16.2 h; β+ = 57 %) have suitable decay properties for molecular imaging with PET, while the Auger electron emitters 77Br (T½ = 57.0 h) and 80mBr (T½ = 4.4 h) as well as the β−-emitter 82Br (T½ = 35.3 h) are useful for internal radiotherapy. 77Br is additionally suited for SPECT. The isotopes 75Br, 76Br and 77Br are usually produced at a cyclotron either by 3He and α-particle induced reactions on natural arsenic or by proton and deuteron induced reactions on enriched selenium isotopes [1]. As target mate-rials for the latter two reactions, earlier ele-mental selenium [2] and selenides of Cu, Ag, Mn, Mo, Cr, Ti, Pb and Sn were investigated [cf. 3–7]. Besides several wet chemical separation techniques the dry distillation of bromine from the irradiated targets was investigated, too [cf. 2, 4, 5]. However, the method needs further development. Nickel selenide was investigated as a promising target to withstand high beam currents, and the dry distillation technique for the isolation of n.c.a. radiobromine from the target was optimized. Material and Methods Crystalline Nickel-(II) selenide (0.3–0.5 g) was melted into a 0.5 mm deep cavity of a 1 mm thick Ni plate covered with a Ni grid. NiSe has a melting point of 959 °C. For development of targeting and the chemical separation, natural target material was used. Irradiations of NiSe were usually performed with protons of 17 MeV using a slanting water cooled target holder at the cyclotron BC1710 [8]. For radiochemical studies a beam current of 3 µA and a beam time of about 1 h were appropriate. To separate the produced no-carrier-added (n.c.a.) radiobromine from the target material a dry distillation method was chosen. The apparatus was developed on the basis of a dry distillation method for iodine [cf. 9,10] and optimized to obtain the bromine as n.c.a. [*Br]bromide in a small volume of sodium hydroxide solution. Changing different components of the apparatus, the dead volume could be minimized and an almost constant argon flow as carrier medium was realized. Various capillaries of platinum, stainless steel and quartz glass with different diameters and lengths were tested to trap the radiobromine. Results and Conclusion Nickel selenide proved successful as target material for the production of radiobromine by proton irradiation with 17 MeV protons. The target was tested so far only at beam currents up to 10 µA, but further investigations are ongoing. The optimized dry distillation procedure allows trapping of 80–90 % of the produced radiobromine in a capillary. For this purpose quartz glass capillaries proved to be most suitable. After rinsing the capillary with 0.1 M NaOH solution the activity can be nearly completely obtained in less than 100 µL solution as [*Br]bromide immediately useable for radiosynthesis. So, the overall separation yield was estimated to 81 ± 5 %. The radionuclidic composition and activity of the separated radiobromide was measured by γ-ray spectrometry. Due to the use of natural selenium the determination of the isotopic purity was not meaningful, but it could be shown that the radiobromine was free from other radioisotopes co-produced in the target material and the backing. The radiochemical purity as well as the specific activity were determined by radio ionchromatography. Further experiments using NiSe produced from nickel and enriched selenium are to be per-formed. The isotopic purity of the produced respective radiobromide, the production yield at high beam currents and the reusability of the target material have to be studied.
3

Production of Radiobromide: new Nickel Selenide target and optimized separation by dry distillation

Breunig, K., Spahn, I., Spellerberg, S., Scholten, B., Coenen, H. H. January 2015 (has links)
Introduction Radioisotopes of bromine are of special interest for nuclear medical applications. The positron emitting isotopes 75Br (T½ = 1.6 h; β+ = 75.5 %) and 76Br (T½ = 16.2 h; β+ = 57 %) have suitable decay properties for molecular imaging with PET, while the Auger electron emitters 77Br (T½ = 57.0 h) and 80mBr (T½ = 4.4 h) as well as the β−-emitter 82Br (T½ = 35.3 h) are useful for internal radiotherapy. 77Br is additionally suited for SPECT. The isotopes 75Br, 76Br and 77Br are usually produced at a cyclotron either by 3He and α-particle induced reactions on natural arsenic or by proton and deuteron induced reactions on enriched selenium isotopes [1]. As target mate-rials for the latter two reactions, earlier ele-mental selenium [2] and selenides of Cu, Ag, Mn, Mo, Cr, Ti, Pb and Sn were investigated [cf. 3–7]. Besides several wet chemical separation techniques the dry distillation of bromine from the irradiated targets was investigated, too [cf. 2, 4, 5]. However, the method needs further development. Nickel selenide was investigated as a promising target to withstand high beam currents, and the dry distillation technique for the isolation of n.c.a. radiobromine from the target was optimized. Material and Methods Crystalline Nickel-(II) selenide (0.3–0.5 g) was melted into a 0.5 mm deep cavity of a 1 mm thick Ni plate covered with a Ni grid. NiSe has a melting point of 959 °C. For development of targeting and the chemical separation, natural target material was used. Irradiations of NiSe were usually performed with protons of 17 MeV using a slanting water cooled target holder at the cyclotron BC1710 [8]. For radiochemical studies a beam current of 3 µA and a beam time of about 1 h were appropriate. To separate the produced no-carrier-added (n.c.a.) radiobromine from the target material a dry distillation method was chosen. The apparatus was developed on the basis of a dry distillation method for iodine [cf. 9,10] and optimized to obtain the bromine as n.c.a. [*Br]bromide in a small volume of sodium hydroxide solution. Changing different components of the apparatus, the dead volume could be minimized and an almost constant argon flow as carrier medium was realized. Various capillaries of platinum, stainless steel and quartz glass with different diameters and lengths were tested to trap the radiobromine. Results and Conclusion Nickel selenide proved successful as target material for the production of radiobromine by proton irradiation with 17 MeV protons. The target was tested so far only at beam currents up to 10 µA, but further investigations are ongoing. The optimized dry distillation procedure allows trapping of 80–90 % of the produced radiobromine in a capillary. For this purpose quartz glass capillaries proved to be most suitable. After rinsing the capillary with 0.1 M NaOH solution the activity can be nearly completely obtained in less than 100 µL solution as [*Br]bromide immediately useable for radiosynthesis. So, the overall separation yield was estimated to 81 ± 5 %. The radionuclidic composition and activity of the separated radiobromide was measured by γ-ray spectrometry. Due to the use of natural selenium the determination of the isotopic purity was not meaningful, but it could be shown that the radiobromine was free from other radioisotopes co-produced in the target material and the backing. The radiochemical purity as well as the specific activity were determined by radio ionchromatography. Further experiments using NiSe produced from nickel and enriched selenium are to be per-formed. The isotopic purity of the produced respective radiobromide, the production yield at high beam currents and the reusability of the target material have to be studied.

Page generated in 0.3462 seconds