• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 570
  • 452
  • 116
  • 107
  • 46
  • 39
  • 39
  • 39
  • 39
  • 39
  • 38
  • 24
  • 14
  • 13
  • 13
  • Tagged with
  • 1601
  • 415
  • 284
  • 167
  • 113
  • 104
  • 101
  • 96
  • 95
  • 80
  • 80
  • 75
  • 69
  • 65
  • 65
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Factors affecting drying performance of a natural convection drier for developing countries

Ryu, Kwan Hee January 2011 (has links)
Digitized by Kansas Correctional Industries
112

Performance optimization of a multi-slotted waveguide for microwave processing applications

St-Denis, Eric. January 1998 (has links)
No description available.
113

Modelling of seed drying using a two-stage drying concept

Jittanit, Weerachet, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
The effect of drying corn, rice and wheat seed in two stages was studied, using germinability as a measure of quality. For the first stage, fluidised bed dryer (FBD) and spouted bed dryer (SBD) were used to dry seed from 20-25%wb to 18%wb while in-store dryer (ISO) was used in the second stage for drying from 18%wb to below 14%wb. The drying air temperature range of 40-80??C was studied for the first stage while 18-30??C and relative humidity 60-70% were for the second stage. It was found that dryer type, drying temperature, initial moisture content of seeds and drying time had significant effects on the seed germination. From the result, the drying air temperature of 40??C was safe for corn and rice in FBD while 60??C was acceptable for wheat. In SBD, the 40??C was the maximum drying temperature for rice and wheat without quality deterioration. Meanwhile the second stage drying in an ISD under all specified conditions was safe. In this work, the thin-layer drying models were developed. The results showed that the modified Page's model and modified two-compartment model were the best-fitted models with the root mean square (RMS) of the differences between the predicted moisture ratio and the measured values below 0.03. Besides, the existing ISD simulation program provided the RMS of 0.3, 1.1, and 0.9%wb for corn, rice and wheat respectively. The germination models for FBD and SBD were also developed. As a result, the modified Giner's models 1&2 were the best-fitted models for FBD with the RMS of the differences between predicted and measured germination percentages of 7.9, 4.2 and 3.4% for corn, rice and wheat while the modified Giner's models 2&3 were for SBD with the RMS of 5.5 and 6.1% for rice and wheat respectively. The comparison between FBD and SBD revealed that FBD had faster drying rate while SBD consumed less energy. Ultimately, the energy cost analysis showed that single-stage drying in a fixed bed dryer using ambient condition consumed less energy than two-stage drying using a FBD and ISD but lower energy cost must be weighed against the faster drying rate, flexibility, portable design, and product uniformity of FBD.
114

Optimisation of the survival of Lactobacillus fermentum PLC in freeze-drying and in subsequent applications

Tran, Lai, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2007 (has links)
No description available.
115

A method for ascertaining the rate of drying of paper and paperboard under machine conditions

Burstein, Victor S. (Victor Simon) 01 January 1944 (has links)
No description available.
116

Investigate the dry and moist heat process for the design of industrial drying machinery for dye-houses

Wan, Iok-cheong., 尹煜祥. January 2011 (has links)
 Drying process needs lots of energy and usually prone to high equipment and operational cost. Research tasks have focused on improving the drying performance and reducing the energy consumption rate. Among a number of industries, textile manufacturing needs the process intensively. It is surprising that little research has concerned principle enhancement and drying process design. In the support by Fong’s National Engineering Company Limited, a series of research that targeting to the inadequacy of technology development for machinery and process design have been conducted. The redevelopment of machinery design has based upon a heat setting machine –ECO dryer. The machine was used as a working platform to supply all necessary testing information before and after the enhancement. The ductwork and air distribution system design have been revised to improve the unevenness drying problems appeared in the heat setting of fabrics. Two main research scopes have been performed that included the development of a new duct sizing approach –Uniform Jet Velocity (UJV) and redesigning the air chambers. The proposed UJV approach is a new air duct design model developed from fluid dynamics principles. The air jet speed along each nozzle is maintained at a constant rate to provide a uniform jet impingement effect. A duct size algorithm was proposed to adjust the cross sectional area ratio between the main and branch streams for the target of producing a constant impingement velocity across the entire air duct. In the enhancement of the air distribution system design, Computational Fluid Dynamics (CFD) analytical approaches were used to model air flow patterns before and after the redesign of air chambers. The CFD analysis results told that a linear air distribution system with four sub-chamber design could produce the best air distribution pattern on the ECO dryer. The request of an accurate drying cycle time predication is also large in textile industry. It is because the problems of under-and over-drying usually happen in the jet impingement process. The second essential objective in the research is to develop systematical approaches for a good qualifying of a drying cycle. Four analytical models have been studied that included First order kinetics, Diffusion, model based on solutions of diffusion equation and Wet surface. An equation for each of the models was developed to describe the characteristics of a porous type fabric drying process. In the study, the required modeling parameters were empirically determined, and the accuracy among the models has been compared. Findings from the research have proved that the model based on solutions of diffusion equation can be the best strategy in presenting a drying cycle under different machine settings. The investigation has not ceased after the completion of the hot air jet impingement research. The study objectives have moved onto an alternative drying technology using steam as the drying medium. Due to many problems reported in the drying of yarn packages using electro-magnetic waves, moist heat drying technology is urgently needed. At the final part of the research, two CFD simulation models namely constant viscous resistance and increasing viscous resistance were studied. A preliminary result generated from ANSYS CFD analysis results was obtained that has opened up a new study area for further elaboration of a new drying technology, and hopefully can be practically applied to textile industry in the near future. / published_or_final_version / Mechanical Engineering / Master / Master of Philosophy
117

Flow through drying of porous media

Mahadevan, Jagannathan 28 August 2008 (has links)
Not available / text
118

Adaptive use of greenhouse structures for fruit drying

Gutierrez Medina, Jose Antonio Alejandro January 1981 (has links)
No description available.
119

Electrohydrodynamic drying of viscous materials and agar gel

Al Bdour, Khuloud. January 2000 (has links)
A need exists for developing a drying technique for heat-sensitive materials as the conventional heat-based drying methods often produce changes in their physico-chemical properties. This thesis presents a non-thermal electrohydrodynamic (EHD) drying technique that may be used to dry both heat-sensitive and viscous materials. A single point-to-plate EHD system was used in de-watering sugar solutions and glycerin-water mixtures having viscosity between 2 and 22 mPa s. The EHD and forced air (2.5 m s-1) each produced 3 to 5 times higher evaporation rate than the control, which was at ambient temperature and relative humidity. The vapor flux decreased considerably and quadratically compared with the control as viscosity increased, and the dehydration kinetics was linear regardless of viscosity. Agar gels showed a linear relationship between vapor flux and time, and EHD was effective in drying at sub-zero temperatures. The agar temperature during drying was significantly below the ambient, indicating evaporative and entropic cooling.
120

Spray drying with plasma-heated water vapour

Amelot, Marie-Pierre. January 1983 (has links)
No description available.

Page generated in 0.0463 seconds