• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dual-Parameter Opto-Mechanical Fiber Optic Sensors for Harsh Environment Sensing: Design, Packaging, Calibration, and Applications

Liang, Tian You Richard 22 May 2015 (has links)
This thesis concerns with the development of a dual-parameter sensor based on fiber Bragg grating (FBG) and a packaging design for high pressure sensing in harsh environment. This thesis starts by introducing a novel design of a partially coated FBG, using a metallic insert and a thermal curing epoxy. An analytical opto-mechanical model, based on couple mode theory, was developed and presented. The experimental and modelling result of the optical response of the partially coated FBG were compared and shown to be in excellent agreement. The experiments were executed on a custom-built fiber optic calibration station. The coated FBG sensor has a temperature sensitivity of 26.9 ± 0.3 pm/°C, which is 2.7 times higher than a bare fiber; and a force sensitivity of 0.104 nm/N, which is 13 times smaller than a bare fiber. The zero reference of the sensor has a drift of a maximum of 70 pm but the sensor is shown to settle within ±5 pm after 3 thermal cycles and 10 tensile loading cycles. A low profile packaging design is presented for a maximum pressure of 20.68 MPa (3000 psi) for harsh environment applications. A detailed study with FEM analysis revealed the optimal design for the package’s sleeve thickness is 0.5 mm. The temperature sensitivity is in close agreement with the unpackaged coated sensor with 10% difference. Compared to the modelling, the equivalent force sensitivity is 27% lower due to prototype dimensional uncertainties and modelling uncertainties with the material properties. The lack of pre-tension of the FBG sensor in the package also attributed to lower force sensitivity at pressure level lower than 4.13 MPa (600 psi).

Page generated in 0.0467 seconds