Spelling suggestions: "subject:"dualwavelength"" "subject:"halfwavelength""
1 |
Two-Color Chirped-Pulse Amplification Fiber Amplifier, for Mid-Infrared GenerationAl-kadry, Alaa January 2010 (has links)
The goal of this thesis is developing a two-color Ytterbium (Yb) fiber amplifier system that can be used for generation of mid-infrared radiation. Previously, our group reported generating 20 µW of average power, at a wavelength of 18µm. This was accomplished through the amplification of a two color-seed with peaks at 1040nm and 1110nm, through a two stage amplification without any compression. The mid-infrared radiation (MIR) was generated with a 4.5 ps pulse duration by the method of difference-frequency mixing, using 300 mW of average power from the two-color Yb-fiber amplifier. Because there was no limitation by two-photon absorption, MIR output power could be scaled by increasing the amplifier power. The current project aims to increase the peak power of the laser pulses to improve the efficiency of the nonlinear mixing. The two-colour seed is generated by continuum generation in a photonic crystal fibre, pumped by 200 mW of average power from a mode-locked Yb:fibre laser. In order to efficiently increase the energy of the two wavelengths, the 4.6 mW seed pulse is now pre-amplified up to 21 mW in a 2.7 m length single mode, single core Yb:fibre . The pre-amplifier used a double-ended pumping scheme with two single mode diode lasers at 976 nm each having 150 mW maximum pump power. A notch filter was placed in the output beam to eliminate any Amplified Spontaneous Emission. After further amplification in a 7 m length of double clad, Yb-fibre, a maximum average power of 727 mW was achieved for two colours peaked at 1035 nm and 1105 nm wavelengths. The pump power for this stage was 6 W. A grating stretcher is now used to select the two-colour input along with stretching the pulses. A three grating compressor is used to compress the output pulses to 466 fs pulse duration. After compression the average power of the two colours is 350 and 110 mW for wavelengths at 1035 and 1105nm, respectively. These higher power pulses are planned to be used to increase the mid-infrared generation efficiency.
|
2 |
Two-Color Chirped-Pulse Amplification Fiber Amplifier, for Mid-Infrared GenerationAl-kadry, Alaa January 2010 (has links)
The goal of this thesis is developing a two-color Ytterbium (Yb) fiber amplifier system that can be used for generation of mid-infrared radiation. Previously, our group reported generating 20 µW of average power, at a wavelength of 18µm. This was accomplished through the amplification of a two color-seed with peaks at 1040nm and 1110nm, through a two stage amplification without any compression. The mid-infrared radiation (MIR) was generated with a 4.5 ps pulse duration by the method of difference-frequency mixing, using 300 mW of average power from the two-color Yb-fiber amplifier. Because there was no limitation by two-photon absorption, MIR output power could be scaled by increasing the amplifier power. The current project aims to increase the peak power of the laser pulses to improve the efficiency of the nonlinear mixing. The two-colour seed is generated by continuum generation in a photonic crystal fibre, pumped by 200 mW of average power from a mode-locked Yb:fibre laser. In order to efficiently increase the energy of the two wavelengths, the 4.6 mW seed pulse is now pre-amplified up to 21 mW in a 2.7 m length single mode, single core Yb:fibre . The pre-amplifier used a double-ended pumping scheme with two single mode diode lasers at 976 nm each having 150 mW maximum pump power. A notch filter was placed in the output beam to eliminate any Amplified Spontaneous Emission. After further amplification in a 7 m length of double clad, Yb-fibre, a maximum average power of 727 mW was achieved for two colours peaked at 1035 nm and 1105 nm wavelengths. The pump power for this stage was 6 W. A grating stretcher is now used to select the two-colour input along with stretching the pulses. A three grating compressor is used to compress the output pulses to 466 fs pulse duration. After compression the average power of the two colours is 350 and 110 mW for wavelengths at 1035 and 1105nm, respectively. These higher power pulses are planned to be used to increase the mid-infrared generation efficiency.
|
3 |
Dual Wavelength Polarimetry for Glucose Sensing in the Anterior Chamber of the EyeMalik, Bilal Hameed 2011 December 1900 (has links)
Clinical guidelines dictate that frequent blood glucose monitoring in diabetic patients is critical towards proper management of the disease. Although, several different types of glucose monitors are now commercially available, most of these devices are invasive, thereby adversely affecting patient compliance. To this end, optical polarimetric glucose sensing through the eye has been proposed as a potential noninvasive means to aid in the control of diabetes. Arguably, the most critical and limiting factor towards successful application of such a technique is the time varying corneal birefringence due to eye motion artifact.
In the first part of this research, we describe a birefringent ocular model along with a geometric ray tracing scheme to serve as a tool towards better understanding of the cornea’s birefringence properties. The simulations show that index-unmatched coupling of light is spatially limited to a smaller range when compared to index-matched situation. Polarimetric measurements on rabbits’ eyes indicate relative agreement between the modeled and experimental values of corneal birefringence. In addition, the observed rotation in the plane of polarized light for multiple wavelengths demonstrates the potential for using a dual-wavelength polarimetric approach to overcome the noise due to time-varying corneal birefringence. These results will ultimately aid in the development of an appropriate eye coupling mechanism for in vivo polarimetric glucose measurements.
The latter part of the dissertation focuses on design and development of a dual wavelength optical polarimeter. The described system utilizes real-time closed-loop feedback based on proportional-integral-derivative (PID) control, which effectively reduced the time taken by the system to stabilize while minimizing the effect of motion artifact, which appears as common noise source for both the wavelengths. Glucose measurements performed in both in vitro and ex vivo conditions demonstrate the sensitivity of the current system. Finally, in vivo results in rabbits indicate that dual-wavelength polarimetry has the potential to noninvasively probe glucose through the anterior chamber of the eye.
|
4 |
A Novel Lab-on-chip System for Counting Particles/Cells Based on Electrokinetically-induced Pressure-driven Flow and Dual-wavelength Fluorescent DetectionJiang, Hai 09 December 2013 (has links)
For the past two decades, flow cytometry has been widely used as a powerful analysis tool for the diagnosis of many diseases due to its ability to count, characterize and sort cells. However, conventional flow cytometers are often bulky, expensive and complicated because sophisticated fluidic, electronic and optical systems are required to realize the functions of flow cytometry. The high cost and the complexity in operation and maintenance associated with flow cytometers as well as the large size have limited its use. In recent years, the rapid development of microfluidics-based lab-on-a-chip technology has created a new pathway for flow cytometry. Microfluidic devices allow for the integration of multiple liquid handling processes required in the diagnostic assays, such as pumping, metering, sampling, dispensing, sequential loading and washing. These lab-on-a-chip solutions have been recognized as an opportunity to bring portable, accurate and sensitive diagnostic tests to the flow cytometry.
However, most current microfluidic flow cytometry devices are micro- only in the microfluidic chip, the rest of most apparatuses are still large and costly, usually involving tubes, microscopes, lasers and mechanical pumps. Therefore, the objective of this study is to develop a novel lab-on-a-chip system based on the electrokinetically-induced pressure-driven flow and dual-wavelength fluorescent detection, which lights a promising pathway for making a real portable, compact, low-cost microfluidic flow cytometry device. In this study, the core of this microfluidic system is the custom-designed PDMS (polydimethylsiloxane) microchip. A novel method was applied to generate the electrokinetically-induced pressure-driven flow in a T-shaped microchannel using parameters settings that had been optimized by numerical study. This method combined both the electrokinetic pumping force and the pressure pumping force to eliminate their shortcomings associated with the use of each force alone. This is the fundamental of my study. By using this microchip, the size of the fluidic control subsystem is reduced significantly. Furthermore, the dual-wavelength fluorescent detection strategy is proposed in this thesis. On the optical detection side, excitation lights of two different wavelengths are provided by a single LED (light-emitting diode) from one side of the microchannel. Then the two emission lights are captured individually by two photo-detectors placed on the top and the bottom of the microchip. Compared with other microfluidic detection devices reported in the literatures that use lasers or PMTs (Photomultiplier tubes), this design allows for a significant reduction of 90% in the volume and cost. As another important part of my thesis research, a novel flow focusing method that allows the hydrodynamic focusing in a T-shaped microchannel with two sheath flows is developed. This method solves the biggest obstacle which exists in current microfluidic flow cytometry devices. In this method, no external pumps, valves and tubing are involved in the system.
Although substantial progress has been made in current microfluidic flow cytometry, there is still a need for a low-cost, compact, portable microfluidic devices, especially in low-resource settings as well as the developing world for POC (point-of-care) diagnosis and analysis. This thesis work has made a great achievement towards the final goal.
|
5 |
Dual-Wavelength Internal-Optically-Pumped Semiconductor Laser DiodesJanuary 2011 (has links)
abstract: Dual-wavelength laser sources have various existing and potential applications in wavelength division multiplexing, differential techniques in spectroscopy for chemical sensing, multiple-wavelength interferometry, terahertz-wave generation, microelectromechanical systems, and microfluidic lab-on-chip systems. In the drive for ever smaller and increasingly mobile electronic devices, dual-wavelength coherent light output from a single semiconductor laser diode would enable further advances and deployment of these technologies. The output of conventional laser diodes is however limited to a single wavelength band with a few subsequent lasing modes depending on the device design. This thesis investigates a novel semiconductor laser device design with a single cavity waveguide capable of dual-wavelength laser output with large spectral separation. The novel dual-wavelength semiconductor laser diode uses two shorter- and longer-wavelength active regions that have separate electron and hole quasi-Fermi energy levels and carrier distributions. The shorter-wavelength active region is based on electrical injection as in conventional laser diodes, and the longer-wavelength active region is then pumped optically by the internal optical field of the shorter-wavelength laser mode, resulting in stable dual-wavelength laser emission at two different wavelengths quite far apart. Different designs of the device are studied using a theoretical model developed in this work to describe the internal optical pumping scheme. The carrier transport and separation of the quasi-Fermi distributions are then modeled using a software package that solves Poisson's equation and the continuity equations to simulate semiconductor devices. Three different designs are grown using molecular beam epitaxy, and broad-area-contact laser diodes are processed using conventional methods. The modeling and experimental results of the first generation design indicate that the optical confinement factor of the longer-wavelength active region is a critical element in realizing dual-wavelength laser output. The modeling predicts lower laser thresholds for the second and third generation designs; however, the experimental results of the second and third generation devices confirm challenges related to the epitaxial growth of the structures in eventually demonstrating dual-wavelength laser output. / Dissertation/Thesis / Ph.D. Electrical Engineering 2011
|
6 |
Calibration of the UMass Advanced Multi-Frequency RadarMclinden, Matthew 01 January 2010 (has links) (PDF)
The Advanced Multi-Frequency Radar is a three-frequency system designed and built by the University of Massachusetts Microwave Remote Sensing Lab (MIRSL). The radar has three frequencies, Ku-band (13.4 GHz), Ka-band (35.6 GHz), and W-band (94.92GHz). The additional information gained from additional frequencies allows the system to be sensitive to a wide range of atmospheric and precipitation particle sizes, while increasing the ability to derive particle microphysics from radar retrievals.
This thesis details the calibration of data from the Canadian CloudSat/CALIPSO Validation Project (C3VP) held during January 2007 in Ontario, Canada. The calibration used internal calibration path data and was confirmed through comparison of precipitation reflectivity with an Environment Canada radar.
The calibrated data was then used to estimate the median mass diameter of precipitating snow from a high-priority C3VP data set. This median mass diameter retrieval was compared to the results from a local ground instrument, the Snow Video Imager (SVI), showing good agreement.
|
7 |
A Novel Solid State General Illumination SourceNicol, David Brackin 29 November 2006 (has links)
A novel solid state illumination source has been developed. A two terminal dual LED has been created with the ability to control the relative intensities of the two emission peaks by varying drive current. Doping profiles have been used to extend the dynamic range of the dual LED over other reported devices. Operation of the dual LEDs is explained as a function of drive current. In addition, novel use of phosphor mixtures allows the creation of a broadband spectral power distribution that can be varied using a dual LED as an excitation source. Combinations of phosphors that have varied excitation spectra provide the ability to selectively excite different phosphors with the different LED emission peaks. First and second generations of the two terminal dual LED and the phosphor combination are discussed. The final source has the ability to mimic the light of a blackbody radiator over a range of 3200 K - 5300 K. The development of a three terminal dual LED as a pump source was prohibited by the need for a III-nitride tunnel junction, that proved unattainable in the scope of this work. However, several novel doping schemes were investigated toward this end. Finally, a circadian light source has also been developed that can affect physiological changes in humans, and a light box for entrainment of circadian rhythms in rats has been built.
|
8 |
Micro-dispositifs accordables pour la conversion de fréquences optiquesKusiaku, Koku 04 October 2012 (has links)
L'absence de source continue monochromatique Térahertz (THz) appropriée constitue un handicap majeur pour le développement des applications associées à cette gamme de longueur d’ondes. En effet, les technologies électroniques et optiques actuelles ne permettent de couvrir qu’une part réduite du spectre électromagnétique THz (0,3-10 THz). Dans ce contexte, la conversion de fréquences optiques, et plus précisément le photo –mélange, est une voie prometteuse pour la génération de signal THz de haute pureté spectrale sur toute la fenêtre du spectre THz. Le photomélange consiste à pomper un dispositif optoélectronique ultrarapide par deux signaux lasers dont les fréquences sont séparées par quelques THz (0,3 à 5 THz). Dans ce travail, nous proposons un nouveau micro-résonateur photonique bifréquence à cavité verticale et monolithique pour la réalisation de source laser bifréquence pour le photomélange. Ce nouveau résonateur est basé sur le couplage de deux résonateurs photoniques, un cristal photonique membranaire résonant d’une part et une cavité Fabry Pérot verticale d’autre part, accordés spectralement, pour réaliser un composant bifréquence. Le couplage optique résultant de l’association de ces deux éléments permet la génération de deux modes hybrides dont la différence de fréquence peut être ajustée en fonction du taux de couplage et donc de la position du cristal photonique dans le micro-résonateur. Le présent travail de thèse porte sur la conception, la fabrication de ce nouveau dispositif bifréquence et son application à la réalisation d’une source laser bi-mode semiconductrice fonctionnant à 1.55dm. / The lack of suitable monochromatic continuous-wave terahertz source consists of one the majors hurdles for terahertz spectrum applications development in various domains. Both electronic and optic technologies don’t allow covering all terahertz electromagnetic spectrum (0.3-10 THz). In this context and in order to generate high spectral purity wave over all THz spectrum window, a well-established technique consists in the photo-mixing procedure, where an ultrafast optoelectronic device is pumped by two laser signals whose frequencies are separated by an offset in the 0.3-5 THz window. In this work, we propose a novel dual-wavelength photonic micro resonator to provide a dual-mode monolithic semiconductor laser for THz generation by photo-mixing instead of the basic photo-mixing approach based on the use of two independent lasers. The novel photonic microresonator associates a vertical Fabry Perot (FP) cavity and photonic crystal membrane (PCM)resonators. A PCM exhibiting a resonant mode at normal incidence is inserted in a FP cavity with a resonant vertical mode at the same wavelength λ0. The resulting strong optical coupling leads to the generation of two mixed modes separated by a frequency difference which can be tuned through the loss rate of the PCM and its position inside the FP cavity. The work of this thesis focuses on the design, the micro-fabrication and the characterization of the dual-frequency resonator and its application to the realization of a single compact and flexible dual-mode semiconductor laser source around 1.55μm.
|
9 |
Etude théorique et expérimentale du fonctionnement bifréquence de microlasers continus et impulsionnels pour la génération d'ondes RF et THz / Theoretical and experimental study of dual-wavelength microlasers in continuouswave and pulsed regimes for the generation of RF and THz waves.Pallas, Florent 01 October 2012 (has links)
Parmi les approches possibles pour réaliser des sources térahertz dans la gamme0,2 - 2 THz, nous nous sommes intéressés à la voie optoélectronique qui consiste à générerl’onde térahertz par le photomélange de deux ondes lasers à des fréquences optiques. Letravail présenté dans cette thèse concerne l’étude de lasers bi-fréquence capables d’émettreles deux ondes requises simultanément. Nous commençons par développer un modèlethéorique décrivant la compétition de gain entre les modes laser grâce au calcul de différentscoefficients de couplage. Sur le plan expérimental, nous montrons tout d’abord qu’endésalignant légèrement un des miroirs de la cavité laser, il est possible d’obtenir un régimestable d’émission sur deux fréquences pourtant en compétition dans le milieu à gain, ici uncristal dopé néodyme. Nous nous intéressons ensuite au régime impulsionnel et montronsque les impulsions peuvent être synchronisées grâce à l’action d’un laser externe. Enfin, leprocessus de photomélange a été réalisé et des ondes électromagnétiques ont été généréesdans le domaine des radio-fréquences autour de 20 GHz. / Among the possible solutions to build terahertz sources in the 0,2 - 2 THz range,we studied the optoelectronic way consisting in the generation of a terahertz wave by photomixingtwo laser waves at optical frequencies. The work presented in this PhD concernsthe study of dual-frequency lasers able to emit the two required waves simultaneously.We begin by developing a theoretical model describing the gain competition between thelaser modes by calculating different coupling coefficients. Experimentally, we first showthat a slight misalignment of the output mirror of the laser cavity allows to obtain a stableemission at two frequencies competing in the gain medium, which is a neodymium-dopedcrystal. Then, we focus on the pulsed regime and we show that the pulses can be synchronizedby the action of an external laser. Finally, the photomixing process has been achievedand electromagnetic waves have been generated in the radio frequencies range around 20GHz.
|
Page generated in 0.0507 seconds