11 |
Top Down Control in a Relatively Pristine Seagrass EcosystemBurkholder, Derek A 09 November 2012 (has links)
The loss of large-bodied herbivores and/or top predators has been associated with large-scale changes in terrestrial, freshwater, and marine ecosystems around the world. Understanding the consequences of these declines has been hampered by a lack of studies in relatively pristine systems. To fill this gap, I investigated the dynamics of the relatively pristine seagrass ecosystem of Shark Bay, Australia. I began by examining the seagrass species distributions, stoichiometry, and patterns of nutrient limitation across the whole of Shark Bay. Large areas were N-limited, P-limited, or limited by factors other than nutrients. Phosphorus-limitation was centered in areas of restricted water exchange with the ocean. Nutrient content of seagrasses varied seasonally, but the strength of seasonal responses were species-specific. Using a cafeteria-style experiment, I found that fast-growing seagrass species, which had higher nutrient content experienced higher rates of herbivory than slow-growing species that are dominant in the bay but have low nutrient content. Although removal rates correlated well with nutrient content at a broad scale, within fast-growing species removal rates were not closely tied to N or P content. Using a combination of stable isotope analysis and animal borne video, I found that green turtles (Chelonia mydas) – one of the most abundant large-bodied herbivores in Shark Bay – appear to assimilate little energy from seagrasses at the population level. There was, however, evidence of individual specialization in turtle diets with some individuals foraging largely on seagrasses and others feeding primarily on macroalgae and gelatinous macroplankton. Finally, I used exclusion cages, to examine whether predation-sensitive habitat shifts by megagrazers (green turtles, dugongs) transmitted a behavior-mediated trophic cascade (BMTC) between sharks and seagrasses. In general, data were consistent with predictions of a behavior-mediated trophic cascade. Megaherbivore impacts on seagrasses were large only in the microhabitat where megaherbivores congregate to reduce predation risk. My study highlights the importance of large herbivores in structuring seagrass communities and, more generally, suggests that roving top predators likely are important in structuring communities - and possibly ecosystems - through non-consumptive pathways.
|
12 |
Spatio-temporal variation of dugongs’ habitat use and vessel traffic revealed by underwater acoustics information: Toward harmonized coastal management / 水中音響情報によるジュゴンの生息地利用と船舶航行の時空間変動の解明:調和のとれた沿岸域マネジメントに向けてTanaka, Kotaro 25 September 2023 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第24936号 / 情博第847号 / 新制||情||142(附属図書館) / 京都大学大学院情報学研究科社会情報学専攻 / (主査)教授 大手 信人, 准教授 小山 里奈, 教授 三田村 啓理, 准教授 市川 光太郎 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
13 |
Dioxins in the Marine Environment: Sources, Pathways and Fate of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Queensland, AustraliaGaus, Caroline, n/a January 2003 (has links)
Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans(PCDFs) are two groups of lipophilic, persistent organic pollutants that are produced as by-products of various anthropogenic and industrial processes. Due to their relatively high toxic potencies and potential to bioaccumulate and biomagnify in organisms and through the food chain, the contemporary widespread distribution of these compounds is a concern to the health of the environment, wildlife and humans. This study determined the distribution, pathways and fate of PCDD/Fs in the coastal zone of Queensland, Australia, including the inshore marine environment of the World Heritage Great Barrier Reef Marine Park. This ecosystem supports unique fauna and flora such as the marine herbivorous mammal dugong (Dugong dugon) and its food source, seagrass. Elevated PCDD/Fs were present in soils and sediments along the entire Queensland coastline. Highest concentrations were found in soil from agricultural irrigation drains and in sediments near the mouths of major rivers. Elevated concentrations were associated with rural and urban types of land-use, and PCDD/Fs were present even in locations remote from anthropogenic activities. PCDD/F congener-specific analysis revealed an unusual profile in all samples, dominated by OCDD, with PCDFs present in low concentrations or below the limit of detection. Distinct HxCDD isomer patterns were observed, with the 1,2,3,7,8,9-HxCDD/1,2,3,4,6,7-HxCDD isomer pair dominating the 2,3,7,8-substituted HxCDDs. Similar congener and isomer characteristics were reported in sediments, soil and clay samples from other continents, but could not be attributed to any known source. Possible PCDD/F sources in Queensland were assessed using segmented estuarine sediment cores, for which radiochemical chronologies were established for each depth. Variations of PCDD/F concentrations in the sediment cores over several centuries of depositional history were relatively small. Elevated PCDD levels were still present in sediment slices from the early 17th century. PCDD/F homologue profiles in sediments deposited during the last 350 years were almost identical and correlated well to the characteristic profiles observed in surface sediments and soils from the entire Queensland coastline. These results suggested the presence of an unidentified PCDD source prior to the production of commercial organochlorine products. To investigate the formation of the unusual PCDD/F profiles, congener and isomer specific analyses were undertaken in soils, sediments and dated sediment cores. The results demonstrated that specific transformation processes in the environment have resulted in the observed PCDD profile characteristics. Dechlorination of OCDD was proposed to result in distinct 1,4-pattern characteristics (i.e. formation of isomers chlorinated in the 1,4,6,9-positions). Consequently, the environmental samples do not reflect the signatures of the original source. An alternative hypothesis to natural formation is discussed evaluating these processes and their implications for possible source contributions. This hypothesis explores the potential for the influence of anthropogenic PCDD precursors (e.g. pentachlorophenol) during the 1940s to 1990s. Transport of PCDD/Fs from the land-based source via impacted tributary river systems, and subsequent deposition processes are proposed to result in PCDD/F accumulation in the inshore marine ecosystem. The extent of the sediment PCDD/F contamination governs the concentrations in the extensive inshore marine seagrass meadows of Queensland. Partitioning processes in the sediment-seagrass system lead to increased toxic equivalency (TEQ) in the seagrass, compared to sediment.The relationship between contaminated inshore sediments, seagrass and dugongs were evaluated using six dugong habitat regions along the coastline. PCDD/F body burdens in dugongs are governed by sediment (and seagrass) PCDD/F concentrations in their habitat. High seagrass (and incidental sediment) ingestion rates, selective retention of toxicologically potent congeners and relatively low PCDD/F elimination capacities in dugongs are proposed to result in elevated PCDD/F concentrations and TEQ levels in adult animals. Transfer efficiencies of 4 and 27% of maternal TEQ levels to foetuses and calves (respectively) during gestation and lactation result in relatively high exposure potentials to offspring. Compared to no-observed-adverse-effect-levels in other mammals, and based on the results of this study, a tolerable daily intake (TDI) of 10-24 pg TEQ kg-1 day-1 was estimated for dugongs. The results of the present study found that dugongs from some regions along the coastline of Queensland exceed this TDI by up to 20 fold, suggesting that these populations may be at risk from PCDD/F contamination in their habitat. These results have important implications for the health of the environment, wildlife and humans and were used to develop a conceptual understanding of the sources, pathways and fate of dioxins in Queensland, Australia.
|
Page generated in 0.0402 seconds