• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 6
  • Tagged with
  • 13
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Reliability Assessment and Modeling of High-k Dielectric Thin Films

Monteiro Diniz Reis, Daniel 24 May 2022 (has links)
Methods for reliability assessment and a deep understanding of degradation mechanisms are important for product and process development. In this work, reliability under electrical stress of a state-of-the-art integrated low-temperature PVD PZT Film stack is discussed. DC and AC lifetime under electric stress are investigated experimentally over wide ranges of temperature and applied electric field. Empirical Weibull analysis and comparison of the obtained Weibull slope is used to evaluate suitable acceleration ranges for empirical testing. Changes of the Weibull slope above a temperature of 150 °C and gradual change over voltage acceleration in the range of 100 kV/cm to 200 kV/cm were found. This indicates that accelerated lifetime testing in the temperature range below 150 °C is possible and caution is required for voltage acceleration. The results of this study are also published in Ref. (a). Closing the literature gap, time to breakdown data under unipolar AC electric stress is presented. Comparison with results obtained under DC electric stress reveals that the DC degradation mechanism still dominates under unipolar AC load. This observation was found to hold over tested AC frequency, DC offset, and temperature ranges. As consequence, AC lifetime can be predicted based on DC time to breakdown experiments (b). To enhance the physical understanding of degradation and breakdown, variation of the leakage current over time during electrical load is analyzed. An enhanced physical model for leakage current degradation is proposed and degradation kinetics are studied experimentally. For the first time, more than one defect species being active and manifesting in leakage current degradation of perovskite oxides are proposed and experimental evidence is presented to substantiate the hypotheses. Model predictions and experimental results are found to be in excellent agreement. The proposed characterization method allows for characterization of contributing defect types by associated charge and true activation energy (c). Based on experimental observations, a direct connection between leakage current degradation mechanism and time dependent dielectric breakdown (TDDB) mechanism is proposed and formulated in a physical model. For the first time, kinetics of leakage current degradation and TDDB are successfully linked, using new evaluation methods for the experimental data obtained under DC and AC electrical stress. This pioneering connection between leakage current and breakdown ultimately leads to the fundament of a comprehensive HALT model. Fundamental implications of the new findings on reliability testing of high-k dielectrics are discussed. / Methoden zur Zuverlässigkeitsbewertung und ein tiefes Verständnis der Degradationsmechanismen sind wichtig für die Produkt- und Prozessentwicklung. In dieser Arbeit wird die Zuverlässigkeit eines auf dem Stand der Technik befindlichen integrierten niedertemperatur PVD PZT Dünnschichtstapels unter elektrischer Last diskutiert. Lebenszeit unter Gleichstrom- (DC) und Wechselstromlast (AC) werden experimentell über weite Bereiche der Temperatur und angelegter Feldstärke untersucht. Empirische Weibull Analyse und Vergleich der erhaltenen Weibull-Module werden verwendet, um Beschleunigungsbereiche für empirische Testverfahren zu bewerten. Eine Veränderung der Weibull-Module oberhalb von 150 °C und eine graduelle Veränderung für Spannungsbeschleunigung im Bereich von 100 kV/cm bis 200 kV/cm wurden festgestellt. Dies weist darauf hin, dass beschleunigte Lebenszeittests im Temperaturbereich unterhalb von 150 °C möglich sind, Spannungsbeschleunigung jedoch mit hoher Vorsicht zu bewerten ist. Die Ergebnisse dieser Untersuchung sind ebenfalls in Ref. (a) veröffentlicht. Durch die Präsentation von Durchbruchzeiten unter unipolarer AC-Belastung wird eine Forschungslücke geschlossen. Ein Vergleich mit Ergebnissen, die unter Gleichstrombelastung erhoben wurden zeigt, dass Degradationsmechanismen, die unter DC aktiv sind unter unipolarer AC-Belastung das Durchbruchverhalten weiterhin dominieren. Diese Beobachtung hat Bestand über die untersuchten Bereiche von AC-Frequenz, DC-Versatz und Temperatur. Daraus folgt, dass Lebenszeit unter AC-Belastung durch Experimente unter DC vorhergesagt werden kann (b). Um das physikalische Verständins von Degradation und Durchbruch zu erweitern, wird die Veränderung des Leckstroms über elektrischer Belastungszeit analysiert. Ein erweitertes physikalisches Modell für die Leckstromdegradation wird vorgeschlagen und die Degradationskinetik wird experimentell untersucht. Zum ersten Mal, werden mehr als zwei aktive Defektarten, die sich in der Leckstromdegradation von Perowskit Oxiden abzeichnen eingebracht und durch experimentelle Befunde untermauert. Modellvorhersagen und experimentelle Ergebnisse zeigen eine exzellente Übereinstimmung. Die vorgeschlagene Charakterisierungsmethode erlaubt die Charakterisierung der beteiligten Defektarten über zugeordneter Ladung und wahrer Aktivierungsenergie (c). Basierend auf experimentellen Beobachtungen wird ein direkter Zusammenhang zwischen Leckstromdegradation und zeitabhängigem dielektrischen Durchbruchmechanismus (TDDB) vorgeschlagen und in einem physikalischen Modell abgebildet. Zum ersten Mal werden die Kinetik hinter Leckstromdegradation und TDDB über neue Auswerteverfahren der erhobenen experimentellen Daten unter DC- und AC-Belastung erfolgreich verknüpft. Dieser wegweisende Zusammenhang zwischen Leckstromdegradation und Durchbruch legt das Fundament zu einer verständnisbasierten stark beschleunigten Grenzlastprüfung. Grundlegende Auswirkungen der neuen Ergebnisse auf Zuverlässigkeitstestmethoden von high-k Dielektrika werden diskutiert.
12

Demonstration and Endurance Improvement of p-channel Hafnia-based Ferroelectric Field Effect Transistors

Winkler, Felix, Pešić, Milan, Richter, Claudia, Hoffmann, Michael, Mikolajick, Michael, Bartha, Johann W. 25 January 2022 (has links)
So far, only CMOS compatible and scalable hafnia-zirconia (HZO) based ferroelectric (FE) n-FeFETs have been reported. To enable the full ferroelectric hierarchy [1] both p- and n-type devices should be available. Here we report a p-FeFET with a large memory window (MW) for the first time. Moreover, we propose different integration schemes comprising structures with and without internal gate resulting in metal-FE-insulator-Si (MFIS) and metal-FE-metal-insulator-Si (MFMIS) devices which could be used to tackle the problem of interface (IF) degradation and possibly decrease the power consumption of the devices.
13

Plasma dynamics between laser-induced breakdown and relativistically induced transparency: An investigation of high-intensity laser-solid interactions by time-resolved off-harmonic optical shadowgraphy

Bernert, Constantin Andreas 10 May 2024 (has links)
Laser-plasma-based ion accelerators are becoming a versatile platform to drive different fields of applied research and life sciences, for example translational research in radiation oncology. To ensure stable accelerator performance, complete control over the ion source, i.e., the high-intensity laser-solid interaction, is required. However, idealized interaction conditions are almost impossible to reach, as the utilized high-power lasers always feature a non-negligible amount of light preceding the laser peak. This leading edge of the laser pulse usually exceeds the ionization potential of bound electrons much earlier than the arrival of the high-power laser peak and the solid-density target undergoes significant modifications even before the actual high-intensity laser-plasma interaction starts. Control over this so-called target pre-expansion is a key requirement to achieve quantitative agreement between numerical simulations and experiments of high-intensity laser-solid interactions. This thesis investigates several aspects that are relevant to improve the capability of simulations to model realistic experimental scenarios. The corresponding experiments are conducted with cryogenic hydrogen-jet targets and the DRACO-PW laser at peak intensities between 10^12 W/cm^2 and 10^21 W/cm^2 . The experimental implementation of time-resolved optical-probing diagnostics and technical innovations with respect to the technique of off-harmonic optical probing overcome the disturbances by parasitic plasma self-emission and allow for unprecedented observations of the target evolution during the laser-target interactions. The laser-induced breakdown of solids, i.e., the phase transition from the solid to the plasma state, can be considered as an heuristic starting point of high-intensity laser-solid interactions. As it is highly relevant to simulations of target pre-expansion, Chapter 3 of this thesis presents time-resolved measurements of laser-induced breakdown in laser-target interactions at peak intensities between 0.6 * 10^21 W/cm^2 and 5.7 * 10^21 W/cm^2 . By increasing the peak intensity, a lowering of the applicable threshold intensity of laser-induced breakdown well below the appearance intensity of barrier-suppression ionization occurs. The observation demonstrates the relevance of the pulse-duration dependence of laser-induced breakdown and laser-induced damage threshold to the starting point of high-intensity laser-solid interactions. To apply the results to other laser-target assemblies, we provide a detailed instruction of how to pinpoint the starting point by comparing measurements of the laser contrast with a characterization study of the target-specific thresholds of laser-induced breakdown at low laser intensity. Chapter 4 of this thesis presents an example of how optical-probing diagnostics are able to estimate target pre-expansion as a starting condition for particle-in-cell simulations. The measurement allows to restrict the surface gradient of the pre-expanded plasma density to an exponential scalelength between 0.06 um and 0.13 um. Furthermore, the plasma-expansion dynamics induced by the ultra-relativistic laser peak are computed and post-processed by ray-tracing simulations. A comparison to the experimental results yields that the formation of the measured shadowgrams is governed by refraction in the plasma-density gradients and that the observed volumetric transparency of the target at 1.4 ps after the laser peak is not caused by relativistically induced transparency but by plasma expansion into vacuum instead. Chapter 5 of this thesis shows that a precise adjustment of the target density to the arrival of the ultra-relativistic laser peak by all-optical target-density tailoring in combination with the low solid density of the cryogenic hydrogen-jet target allows to explore the laser-target interaction in the nearcritical density regime. The chapter presents an experimental demonstration of all-optical target-density tailoring by isochoric heating via ultra-short laser pulses with a dimensionless vector potential a_0 ∼ 1. A hybrid of hydrodynamics and ray-tracing simulations allows to determine the evolution of the full target-density distribution after isochoric heating. Finally, the utilization of the method as a testbed platform to experimentally benchmark collisional particle-in-cell simulations is proposed and an experimental exploration of future possibilities of all-optical target-density tailoring is given. / Laser-Plasma-basierte Ionenbeschleuniger stellen einer vielseitigen Plattform für verschiedene Bereiche der angewandten Forschung und der Biowissenschaften dar, z. B. für die translationale Forschung in der Strahlentherapie. Um eine stabile Beschleunigerleistung zu gewährleisten, muss die Ionenquelle, d. h. die Wechselwirkung zwischen dem Hochintensitätslaser und einem Festkörper, vollständig kontrolliert sein. Idealisierte Wechselwirkungsbedingungen können jedoch fast nie erreicht werden, da die verwendeten Hochleistungslaser immer eine nicht zu vernachlässigende Lichtmenge vor der Spitze des Laserpulses aufweisen. Diese vorangehende Flanke des Laserpulses überschreitet Intensitäten, welche zur Ionisation gebundener Elektronen führen, in der Regel schon wesentlich eher als das die Spitze des Hochleistungslaserpulses eintrifft. Der Festkörper unterliegt deshalb noch vor der eigentlichen hochintensiven Wechselwirkung erheblichen Modifikationenen durch die vorangehende Flanke. Die Kontrolle dieser so genannten Vorexpansion ist eine wichtige Voraussetzung für die quantitative Übereinstimmung zwischen numerischen Simulationen und Experimenten von Wechselwirkungen zwischen hochintensiven Lasern und Festkörpern. Diese Arbeit untersucht mehrere Aspekte, welche für die Verbesserung von Simulationen realistischer experimenteller Szenarien relevant sind. Die entsprechenden Experimente werden mit Festkörpern aus kryogenen Wasserstoff und dem DRACO PW Laser mit Intensitäten zwischen 10^12 W/cm^2 und 10^21 W/cm^2 durchgeführt. Die experimentelle Implementierung zeitaufgelöster optischer Mikroskopie und technische Innovationen für die Technik der optischen Untersuchung abseits der Harmonischen des Lasers (off-harmonic optical probing) überwinden Störungen durch parasitäre Selbstemission des Plasmas und ermöglichen bisher unerreichte Beobachtungen der Evolution des Plasmas. Die laserinduzierte Zerstörschwelle des Festkörpers, d.h. der Phasenübergang vom festen Aggregatzustand in den Plasmazustand, kann als heuristischer Anfangszeitpunkt der Wechselwirkung eines hochintensiven Lasers mit einem Festkörper betrachtet werden. Da dies für Simulationen der Vorexpansion von großer Bedeutung ist, werden in Kapitel 3 dieser Arbeit zeitaufgelöste Messungen der laserinduzierten Zerstörung von Festkörpern in Wechselwirkungen mit Laserpulsen, deren Spitzenintensität zwischen 0.6 * 10^21 W/cm^2 und 5.7 * 10^21 W/cm^2 liegt, präsentiert. Durch die Erhöhung der Spitzenintensität kommt es zu einer Absenkung der anwendbaren laserinduzierten Zerstörschwellintensität deutlich unter die Erscheinungsintensität (appearance intensity) der Ionisation mittels Absenkung des Coulomb Potentials (barrier-suppression ionization). Die Beobachtung demonstriert die Relevanz der Pulsdauerabhängigkeit von Messungen laserinduzierter Zerstörschwellen auch für den Anfangszeitpunkt von Wechselwirkungen zwischen Festkörpern und hochintensiven Laserpulsen. Um die Ergebnisse auf die Wechselwirkung anderer Kombinationen von Lasern und Festkörpern anwenden zu können, stellen wir eine detaillierte Anleitung zur Bestimmung des Anfangszeitpunkts der Vorexpansion dar, welche auf dem Vergleich der Messungen des Laserkontrasts mit einer Charakterisierungsstudie der spezifischen laserinduzierten Zerstörschwellen bei niedriger Laserintensität basiert. Kapitel 4 dieser Arbeit präsentiert ein Beispiel, wie mit Hilfe der zeitaufgelösten optischen Mikroskopie die Vorexpansion als Ausgangsbedingung für Teilchen-in-Zellen (particle-in-cell) Simulationen abgeschätzt werden kann. Die Messungen erlauben es, den Oberflächengradienten der vorexpandierten Plasmadichte auf eine exponentielle Skalenlänge zwischen 0.06 μm und 0.13 μm einzugrenzen. Darüber hinaus wird die Plasmaexpansionsdynamik, welche durch die hochintensive Spitze des Laserpulses induzierte wird, berechnet und durch Lichtstrahlverfolgungssimulationen (ray-tracing simulations) nachbearbeitet. Ein Vergleich mit den experimentellen Ergebnissen zeigt, dass die Erzeugung der gemessenen Schattenbilder durch Brechung in den Dichtegradienten des Plasmas bestimmt ist und, dass die beobachtete volumetrische Transparenz des Plasmas 1.4 ps nach der Spitze des Laserpulses nicht durch relativistisch induzierte Transparenz, sondern durch Plasmaexpansion in das umliegende Vakuum verursacht wird. Abschließend zeigt Kapitel 5 dieser Arbeit, dass eine präzise Anpassung der Plasmadichte zum Zeitpunkt des Eintreffens der hochintensiven Spitzenintensität durch eine gezielte optisch-induzierte Plasmaexpansion in Kombination mit der niedrigen initialen Festkörperdichte des kryogenen Wasserstoffs die Untersuchung von Wechselwirkungen im nahkritischen Dichtebereich ermöglicht. Das Kapitel stellt eine experimentelle Demonstration der gezielten optisch induzierten Plasmaexpansion durch isochores Heizen mittels ultrakurzer Laserpulse mit einem dimensionslosen Vektorpotential a_0 ∼ 1 vor. Ein Hybrid aus Hydrodynamik- und Lichtstrahlverfolgungssimulationen ermöglicht es, die zeitliche Entwicklung der gesamten Dichteverteilung des Plasmas nach dem isochoren Heizen zu bestimmen. Abschließend präsentiert das Kapitel ein Konzept, um die Methode als Testplattform für die experimentelle Überprüfung von kollisionalen Teilchen-in-Zellen Simulationen zu nutzen und es werden die Ergebnisse einer experimentellen Untersuchung zu zukünftigen Möglichkeiten der Methode dargelegt.

Page generated in 0.0247 seconds