• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On infinite matrices whose entries satisfying certain dyadic recurrent formula

Hsu, Chia-ming 25 July 2007 (has links)
Let (b$_{i,j}$) be a bounded matrix on extit{ l}$^{2}$, $Bbb T={zinBbb C:|z|=1}$, and A be a bounded matrix on L$^{ 2}(mathbb{T)}$ satisfying the conditions 1.$langle Az^{2j},z^{2i} angle =sigma ^{-1}b_{ij}+|alpha |^{2}sigma ^{-1}langle Az^{j},z^{i} angle $; 2.$langle Az^{2j},z^{2i-1} angle =-alpha sigma ^{-1}b_{ij}+alpha sigma ^{-1}langle Az^{j},z^{i} angle $; 3.$langle Az^{2j-1},z^{2i} angle =-overline{alpha }sigma ^{-1}b_{ij}+overline{alpha }sigma ^{-1}langle Az^{j},z^{i} angle$; 4.$langle Az^{2j-1},z^{2i-1} angle =|alpha |^{2}sigma ^{-1}b_{ij}+sigma ^{-1}langle Az^{j},z^{i} angle $ hspace{-0.76cm} for all $i,jin mathbb{Z}$, where $sigma =1+|alpha |^{2},,alpha in mathbb{C},alpha eq0$. The above conditions evidently suggests that there is a "dyadic" relation in the entries of $A$. Here in the following picture illustrates how each $ij-$th entry of $A$ generates the 2 by 2 block in $A$ with entries ${a_{2i 2j}, a_{2i-1 2j}, a_{2i 2j-1}, a_{2i-1 2j-1}}.$ vspace{-0.3cm} egin{figure}[hp] egin{center} includegraphics[scale=0.42]{cubic.pdf} end{center} vspace{-0.8cm}caption{The dyadic recurrent form} end{figure} It has been shown [2] that $displaystyle A=sum_{n=0}^{infty }S^{n}BS^{ast n}$, where $Sz^i=sigma ^{-1/2}(overline{alpha }z^{2i}+z^{2i-1})$ and $$B=sumlimits_{i=-infty}^infty sumlimits_{j=-infty}^infty b_{ij}(u_{i}otimes u_{j}), u_{i}(z)=sigma ^{-1/2}z^{2i-1}(alpha -z).$$ In this paper, we shall use the above relations to compute $langle a_{i,j} angle $ explicitly. ewline Key words: shift operator, bounded matrix, dyadic recurrent formula, slant Toeplitz operator, separable Hilbert space 2.$langle Az^{2j},z^{2i-1} angle =-alpha sigma ^{-1}b_{ij}+alpha sigma ^{-1}langle Az^{j},z^{i} angle $ 3.$langle Az^{2j-1},z^{2i} angle =-overline{alpha }sigma ^{-1}b_{ij}+overline{alpha }sigma ^{-1}langle Az^{j},z^{i} angle $ 4.$langle Az^{2j-1},z^{2i-1} angle =|alpha |^{2}sigma ^{-1}b_{ij}+sigma ^{-1}langle Az^{j},z^{i} angle $ for all $i,jin mathbb{Z}$, where $sigma =1+|alpha |^{2},,alpha in mathbb{C},alpha eq0$ egin{figure}[hp] egin{center} includegraphics[scale=0.42]{cubic.pdf} end{center} caption{The dyadic recurrent form} end{figure} Since it has been shown [2] that $displaystyle A=sum_{n=0}^{infty }S^{n}BS^{ast n}$, where $ Sz^i=sigma ^{-1/2}(overline{alpha }z^{2i}+z^{2i-1})$ $ B=sum sum b_{ij}(u_{i}otimes u_{j})$ ;;; which $u_{i}(z)=sigma ^{-1/2}z^{2i-1}(alpha -z)$ Then we can use it to compute $langle Az^{j},z^{i} angle $ explicity if A satisfies the previous condition. ewline Key words: shift operator, bounded matrix, dyadic recurrent formula, slant Toeplitz operator, separable Hilbert space

Page generated in 0.0685 seconds