• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Operators which are constant with respect to slant Toeplitz operators

Chen, Chien-chou 04 July 2006 (has links)
Let H be a separable Hilbert space and {e_n : n belong to Z} be an orthonormal basis in H. A bounded operator T is called the slant Toeplitz operator if <T ej , ei> =c2i−j , where c_n is the n-th Fourier series of a bounded Lebesgue measurable function on the unit circle T = {z belong to C : |z| = 1}. It has been shown [7] that T* is an isometry if and only if |fi(z)|^2 +|fi(−z)|^2 = 2 a.e. on T and if this is the case and fi belong to C(T), then either T is unitarily equivalent to a shift or to the direct sum of a shift and a rank one unitary, with infinite multiplicity (for the shift part, that is). Moreover, with some additional assumption on the smoothness and the zeros of fi, T* is similar to either the constant multiple of a shift or to the constant multiple of the direct sum of a shift and a rank one unitary, with infinite multiplicity. On the other hand, according to the terminologies in [10], an operator A that is constant with respect to a shift S if AS = SA and A S = SA . Therefore, in this article, we will study the operators that is constant with respect to T , i.e., bounded operator A satisfying AT = T A and A T = T A .
2

Eigenvectors for Certain Action on B(H) Induced by Shift

Cheng, Rong-Hang 05 September 2011 (has links)
Let $l^2(Bbb Z)$ be the Hilbert space of square summable double sequences of complex numbers with standard basis ${e_n:ninBbb Z}$, and let us consider a bounded matrix $A$ on $l^2(Bbb Z)$ satisfying the following system of equations egin{itemize} item[1.] $lan Ae_{2j},e_{2i} an=p_{ij}+alan Ae_{j},e_i an$; item[2.] $lan Ae_{2j},e_{2i-1} an=q_{ij}+blan Ae_{j},e_{i} an$; item[3.] $lan Ae_{2j-1},e_{2i} an=v_{ij}+clan Ae_{j},e_{i} an$; item[4.] $lan Ae_{2j-1},e_{2i-1} an=w_{ij}+dlan Ae_{j},e_{i} an$ end{itemize} for all $i,j$, where $P=(p_{ij})$, $Q=(q_{ij})$, $V=(v_{ij})$, $W=(w_{ij})$ are bounded matrices on $l^2(Bbb Z)$ and $a,b,c,dinBbb C$. This type dyadic recurrent system arises in the study of bounded operators commuting with the slant Toeplitz operators, i.e., the class of operators ${{cal T}_vp:vpin L^infty(Bbb T)}$ satisfying $lan {cal T}_vp e_j,e_i an=c_{2i-j}$, where $c_n$ is the $n$-th Fourier coefficient of $vp$. It is shown in [10] that the solutions of the above system are closely related to the bounded solution $A$ for the operator equation [ phi(A)=S^*AS=lambda A+B, ] where $B$ is fixed, $lambdainBbb C$ and $S$ the shift given by ${cal T}_{arzeta+arxi z}^*$ (with $zetaxi ot=0$ and $|zeta|^2+|xi|^2=1$). In this paper, we shall characterize the ``eigenvectors" for $phi$ for the eigenvalue $lambda$ with $|lambda|leq1$, in terms of dyadic recurrent systems similar to the one above.
3

On infinite matrices whose entries satisfying certain dyadic recurrent formula

Hsu, Chia-ming 25 July 2007 (has links)
Let (b$_{i,j}$) be a bounded matrix on extit{ l}$^{2}$, $Bbb T={zinBbb C:|z|=1}$, and A be a bounded matrix on L$^{ 2}(mathbb{T)}$ satisfying the conditions 1.$langle Az^{2j},z^{2i} angle =sigma ^{-1}b_{ij}+|alpha |^{2}sigma ^{-1}langle Az^{j},z^{i} angle $; 2.$langle Az^{2j},z^{2i-1} angle =-alpha sigma ^{-1}b_{ij}+alpha sigma ^{-1}langle Az^{j},z^{i} angle $; 3.$langle Az^{2j-1},z^{2i} angle =-overline{alpha }sigma ^{-1}b_{ij}+overline{alpha }sigma ^{-1}langle Az^{j},z^{i} angle$; 4.$langle Az^{2j-1},z^{2i-1} angle =|alpha |^{2}sigma ^{-1}b_{ij}+sigma ^{-1}langle Az^{j},z^{i} angle $ hspace{-0.76cm} for all $i,jin mathbb{Z}$, where $sigma =1+|alpha |^{2},,alpha in mathbb{C},alpha eq0$. The above conditions evidently suggests that there is a "dyadic" relation in the entries of $A$. Here in the following picture illustrates how each $ij-$th entry of $A$ generates the 2 by 2 block in $A$ with entries ${a_{2i 2j}, a_{2i-1 2j}, a_{2i 2j-1}, a_{2i-1 2j-1}}.$ vspace{-0.3cm} egin{figure}[hp] egin{center} includegraphics[scale=0.42]{cubic.pdf} end{center} vspace{-0.8cm}caption{The dyadic recurrent form} end{figure} It has been shown [2] that $displaystyle A=sum_{n=0}^{infty }S^{n}BS^{ast n}$, where $Sz^i=sigma ^{-1/2}(overline{alpha }z^{2i}+z^{2i-1})$ and $$B=sumlimits_{i=-infty}^infty sumlimits_{j=-infty}^infty b_{ij}(u_{i}otimes u_{j}), u_{i}(z)=sigma ^{-1/2}z^{2i-1}(alpha -z).$$ In this paper, we shall use the above relations to compute $langle a_{i,j} angle $ explicitly. ewline Key words: shift operator, bounded matrix, dyadic recurrent formula, slant Toeplitz operator, separable Hilbert space 2.$langle Az^{2j},z^{2i-1} angle =-alpha sigma ^{-1}b_{ij}+alpha sigma ^{-1}langle Az^{j},z^{i} angle $ 3.$langle Az^{2j-1},z^{2i} angle =-overline{alpha }sigma ^{-1}b_{ij}+overline{alpha }sigma ^{-1}langle Az^{j},z^{i} angle $ 4.$langle Az^{2j-1},z^{2i-1} angle =|alpha |^{2}sigma ^{-1}b_{ij}+sigma ^{-1}langle Az^{j},z^{i} angle $ for all $i,jin mathbb{Z}$, where $sigma =1+|alpha |^{2},,alpha in mathbb{C},alpha eq0$ egin{figure}[hp] egin{center} includegraphics[scale=0.42]{cubic.pdf} end{center} caption{The dyadic recurrent form} end{figure} Since it has been shown [2] that $displaystyle A=sum_{n=0}^{infty }S^{n}BS^{ast n}$, where $ Sz^i=sigma ^{-1/2}(overline{alpha }z^{2i}+z^{2i-1})$ $ B=sum sum b_{ij}(u_{i}otimes u_{j})$ ;;; which $u_{i}(z)=sigma ^{-1/2}z^{2i-1}(alpha -z)$ Then we can use it to compute $langle Az^{j},z^{i} angle $ explicity if A satisfies the previous condition. ewline Key words: shift operator, bounded matrix, dyadic recurrent formula, slant Toeplitz operator, separable Hilbert space

Page generated in 0.0902 seconds