• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 122
  • 13
  • 11
  • 10
  • 7
  • 6
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 213
  • 213
  • 204
  • 151
  • 62
  • 37
  • 36
  • 32
  • 26
  • 25
  • 24
  • 24
  • 22
  • 22
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Ultrafast photodynamics of ZnO solar cells sensitized with the organic indoline derivative D149

Rohwer, Egmont Johann 04 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: The initial charge transfer from dye molecules' excited states to the conduction band of a semiconductor, after absorption of visible light by the former, is critical to the performance of Dye sensitized Solar Cells (DSC). In a ZnO-based DSC sensitized by the organic indoline derivative D149, the dynamics associated with charge transfer are investigated with femtosecond transient absorption spectroscopy. The time-resolved measurement of the photo-initiated processes reveal electron transfer rates corresponding to excited state lifetimes of 100s of fs, consistent with previously measured high absorbed photon to current conversion efficiencies. The photo-electrode measured as an isolated system shows decay times of bound electrons in excited states of the dye to be ~150 fs and shows the subsequent emergence of absorption bands of the oxidized molecules. When the I-/I-3 redox couple is added to the system, these excited state lifetimes change and are found to be dependent on the cation in the electrolytic solution. Small cations like Li+ reduce the excited state lifetime to sub-100 fs, whilst larger cations like the organic tetrabutylammonium result in longer lifetimes of 240 fs. The action of the electrolyte can be observed by the reduced lifetime of the oxidized dye molecules' absorption bands. The effect of operating parameters and changes in the production protocol of the DSC on the primary charge injection are also investigated and reported on. / AFRIKAANSE OPSOMMING: Die aanvanklike ladingsoordrag vanuit kleurstofmolekules' opgewekte toestande tot in die leidingsband van 'n halfgeleier, na absorpsie van sigbare lig deur eersgenoemde, is van kritiese belang vir die uitset van halfgeleier-gebaseerde sonkragselle wat met kleurstowwe vir absorpsie verhoging, gebind is. In hierdie werk word hierdie proses en verwante fotodinamika in die geval van 'n ZnO sonkragsel gekleur met indolien D149 ondersoek d.m.v femtosekonde-tydopgelosde absorpsiespektroskopie. Hierdie metings onthul elektron-oordragstempos wat ooreenstem met lewenstye van opgewekte toestande in die orde van 100 fs. Hierdie is met voorheen-bepaalde hoë foton-tot-stroom omskakelingsdoeltreffendheid ooreenkomstig. Die foto-elektrode, as geïsoleerde sisteem beskou, toon afvalstye van gebonde elektrone in opgewekte toestande van ~150 fs, en die gevolglike opkoms van absorpsie deur geoksideerde molekules word waargeneem. As die I-/I-3 redoks oplossing tot die sisteem bygevoeg word, verander die opgewekte toestande se afvalstye en toon 'n katioon-afhanklikheid. Klein katioone soos Li+ verkort die afvalstye tot onder 100 fs, terwyl groter katioone soos die organiese tetra-butielammonium langer afvalstye (240 fs) tot gevolg het. Die werking van die elektrolitiese oplossing kan waargeneem word deur die verkorte lewenstyd van die absorpsiebande wat aan die geoksideerde molekules toegeken is. Die uitwerking van operasionele parameter asook veranderinge in die produksie protokol op die primêre ladingsoordrag word ondersoek en verslag daarop word gelewer.
122

Photoluminescence from Inner Walls in Double-Walled Carbon Nanotubes and Hybrid Carbon/Titanium Dioxide Gels for Energy Conversion and Storage Applications

Yang, Sungwoo January 2011 (has links)
<p>Currently, fossil fuels and nuclear power are our primary energy sources. However, both have critical disadvantages due to the limited supply and the hazard issues. Renewable energy research becomes one of most important research topics in the 21st century. Nanostructured materials show unique electrochemical properties in various energy conversion or storage devices. This dissertation starts with fundamental optical studies of nanomaterials (carbon nanotubes), followed by synthesizing novel nanomaterials for energy conversion (solar cells) and storage (lithium ion batteries) devices. </p><p> (1) There is an on-going debate concerning the ability of double walled carbon nanotubes (DWNTs) to exhibit photoluminescence (PL). We aim to clearly resolve this debate through the study of carefully separated DWNTs using density gradient ultra-centrifugation (DGU). Here, we clearly show that light is emitted from the inner wall of DWNTs. Interestingly, it was found that a very narrow range of diameters of the inner walls of DWNTs is required for photoluminescence (PL) to be observable. All other diameters led to complete PL quenching in DWNTs. (2) Inexpensive dye sensitized solar cells (DSSCs) on flexible plastic substrates have a bright future, but they require low temperature annealing (< 200°C). The method to fabricate low temperature DSSCs should resolve poor electron transfer between titanium dioxide (TiO2) nanoparticles (NPs) due to their incomplete contiguity and insulating layer of organic residues from binders in the photoactive film. Here, we have developed uniform CNTs/TiO2 composites for low temperature DSSCs by using modified sol gel method. DSSCs were fabricated to study incorporating functionalized few walled carbon nanotubes (f-FWNTs) effect on TiO2 NPs. Incorporating f-FWNTs can be beneficial for the low temperature annealing process of DSSCs to overcome extremely poor electron transport through TiO2 photoactive film. Incorporating f-FWNTs with TiO2 active layer improves electrons transport in some degree, but this advantage is limited. (3) Conductive fillers, such as amorphous carbon, carbon nanotube and graphene, have been mixed with nanostructured metal oxide materials to improve the performance of electrode materials in energy storage devices. However, ineffective junctions between conductive fillers are limiting the overall conductivity of the electrode. Therefore, we developed a convenient, inexpensive and scalable method for synthesizing hybrid carbon and titanium dioxide (C/TiO2) co-gels and co-aerogels to improve their electrochemical capacity in lithium ions batteries (LIBs). The monolith of the hybrid C/TiO2 co-aerogel can be directly used as active electrodes without the addition of binders. As a result, the capacitance of LIB anodes using the hybrid co-aerogel is significantly improved over current LIBs based on carbon/titanium oxide composite. Other metal oxides could also form co-gels with carbon to improve their potentials in numerous electrochemical, photocatalytic, and photoelectronic devices.</p> / Dissertation
123

Investigation of charge-transfer dynamics in organic materials for solar cells

Weisspfennig, Christian Thomas January 2014 (has links)
This thesis improves our understanding of the charge-transfer dynamics in organic materials employed in dye-sensitized and nanotube-thiophene solar cells. For the purpose of this work, a femtosecond transient absorption spectroscopy setup was built. Additionally, microsecond transient absorption spectroscopy was utilised to explore dynamics on a longer time-scale. In the first study, the dependence of dye regeneration and charge collection on the pore- filling fraction (PFF) in solid-state dye-sensitized solar cells (DSSCs) is investigated. It is shown that while complete hole transfer with PFFs as low as ~30% can be achieved, improvements beyond this PFF are assigned to a stepwise increase in the charge-collection efficiency in agreement with percolation theory. It is further predicted that the chargecollection efficiency saturates at a PFF of ~82%. The study is followed by an investigation of three novel hole-transporting materials for DSSCs with slightly varying HOMO levels to systematically explore the possibility of reducing the loss-in-potential and thus improving the device efficiency. It is shown that despite one new HTM showing a 100% hole-transfer yield, all devices based on the new HTMs performed worse than those incorporating spiro-OMeTAD. Furthermore, it is demonstrated that the design of the HTM has an additional impact on the electronic density of states present at the TiO<sub>2</sub> electrode surface, and hence influences not only hole- but also electron-transfer from the sensitizer. Finally, a study on a polymer-single-walled carbon nanotube (SWNT) molecular junction is presented. Results from femtosecond spectroscopic techniques show that the polymer poly(3-hexylthiophene) (P3HT) is able to transfer charges to the SWNT within 430 fs. Addition of excess P3HT polymer leads to long-lived free charges making these materials a viable option for solar cells.
124

Dye sensitized solar cells: optimization of Grätzel solar cells towards plasmonic enhanced photovoltaics

Essner, Jeremy January 1900 (has links)
Master of Science / Department of Chemistry / Jun Li / With the worldly consumption of energy continually increasing and the main source of this energy, fossil fuels, slowly being depleted, the need for alternate sources of energy is becoming more and more pertinent. One promising approach for an alternate method of producing energy is using solar cells to convert sunlight into electrical energy through photovoltaic processes. Currently, the most widely commercialized solar cell is based on a single p-n junction with silicon. Silicon solar cells are able to obtain high efficiencies but the downfall is, in order to achieve this performance, expensive fabrication techniques and high purity materials must be employed. An encouraging cheaper alternative to silicon solar cells is the dye-sensitized solar cell (DSSC) which is based on a wide band gap semiconductor sensitized with a visible light absorbing species. While DSSCs are less expensive, their efficiencies are still quite low compared to silicon. In this thesis, Grätzel cells (DSSCs based on TiO2 NPs) were fabricated and optimized to establish a reliable standard for further improvement. Optimized single layer GSCs and double layer GSCs showing efficiencies >4% and efficiencies of ~6%, respectively, were obtained. Recently, the incorporation of metallic nanoparticles into silicon solar cells has shown improved efficiency and lowered material cost. By utilizing their plasmonic properties, incident light can be scattered, concentrated, or trapped thereby increasing the effective path length of the cell and allowing the physical thickness of the cell to be reduced. This concept can also be applied to DSSCs, which are cheaper and easier to fabricate than Si based solar cells but are limited by lower efficiency. By incorporating 20 nm diameter Au nanoparticles (Au NPs) into DSSCs at the FTO/TiO2 interface as sub wavelength antennae, average photocurrent enhancements of 14% (maximum up to ~32%) and average efficiency enhancements of 13% (maximum up to ~23% ) were achieved with well dispersed, low surface coverages of nanoparticles. However the Au nanoparticle solar cell (AuNPSC) performance is very sensitive to the surface coverage, the extent of nanoparticle aggregation, and the electrolyte employed, all of which can lead to detrimental effects (decreased performances) on the devices.
125

Considerações sobre a liberação fotoquímica de óxido nítrico, sensibilizada por corantes, a partir de um nitrosilo de rutênio / Considerations on the dye-sensitized photochemical release of nitric oxide from a ruthenium nitrosyl

Gaspari, Ana Paula Segantin 21 October 2013 (has links)
O complexo conhecido trans-[Ru(NO)(NH3)4(py)](BF4)3 foi sintetizado e caracterizado por cromatografia líquida de alta eficiência e espectroscopias de RMN de 1H, de absorção eletrônica e de infravermelho e RPE. O espectro de absorção de infravermelho do complexo apresenta o pico de estiramento de NO em 1931 cm-1 e o seu espectro de absorção eletrônica apresenta bandas em 237 nm (e = 5200 mol-1 L cm-1), 267 (e = 2300 mol-1 L cm-1), e 324 nm (e = 160 mol-1 L cm-1), concordantes com a literatura.O corante azul do Nilo (máx = 635 nm) sofre fotoquímica quando irradiado com luz de 577 nm, ao passo que os corantes rodamina-B (máx = 524 e 570 nm), fluoresceína sódica (máx = 437 nm) e tartrazina (máx = 438 nm) não. A fotólise do complexo em solução aquosa, pH ~3, com luz de 313 nm leva à liberação de NO. Soluções aquosas de trans-[Ru(NO)(NH3)4(py)](BF4)3 em pH 7,4 (tampão fosfato) na presença da forma monomérica dos corantes rodamina-B (lirr = 570 nm), fluoresceína sódica (lirr = 440 e 490 nm), tartrazina (lirr = 440 nm) e alaranjado de acridina (lirr = 440 nm) foram irradiadas com laser nas bandas de absorção máxima desses corantes. Para verificar se estava ocorrendo a liberação de NO pelo complexo através da sensibilização por corantes foram utilizados os capturadores de NO mioglobina e carboxy-PTIO. Os resultados indicam que não houve liberação de NO nesses casos, sugerindo que não ocorre transferência de energia de corantes para o complexo trans-[Ru(NO)(NH3)4(py)]3+, ao se irradiar na banda de absorbância máxima dos corantes, pelo mecanismo de Förster (transferência de energia a longa distância). Para que ocorra, a fotoquímica deve estar associada a uma transferência de energia do tipo Dexter, onde o corante é ligado diretamente ao complexo. / The known complex trans-[Ru(NO)(NH3)4(py)](BF4)3 was synthesized and characterized by high performance liquid chromatography, 1H NMR, EPR, and electronic and infrared absorption spectroscopies. The complex infrared absorption spectrum displays the NO stretching peak at 1931 cm-1 and its electronic absorption spectrum shows bands at 237 nm (e = 5200 mol-1 L cm-1), 267 (e = 2300 mol-1 L cm-1), and 324 nm (e = 160 mol-1 L cm-1), in agreement with reported values. The Nile blue dye (max = 635 nm) undergoes photochemistry by irradiation with 577 nm light, while rhodamine-B (max = 524 and 570 nm), sodium fluorescein (max = 437 nm) and tartrazine (max = 438 nm) do not. The photolysis of the complex in pH 3 aqueous solution with 313 nm light results in NO release. Aqueous solutions of trans-[Ru(NO)(NH3)4(py)](BF4)3 at pH 7,4 (BPS) in the presence of the monomeric forms of the rhodamina-B (lirr = 570 nm), sodium fluorescein (lirr = 440 e 490 nm), tartrazine (lirr = 440 nm), and acridine orange (lirr = 440 nm) dyes were irradiated at the their absorption maxima. In order to verify the NO release from the complex through sensitization by the dyes, the NO scavengers myoglobin and carboxy-PTIO were used. The results indicate that NO release does not occur under these circumstances, suggesting, thus, that there is no energy transfer from the dyes to the trans-[Ru(NO)(NH3)4(py)]3+ complex by irradiating at the dyes absorbance maxima bands by the Förster mechanism (long distance energy transfer). For the photochemistry to occur it should be associated to a Dexter type energy transfer, in which the sensitizer is directly attached to the complex.
126

Paramètres de performances de photo-électrodes de Ti02/Kaolinite et d'électrolytes à base de carbonates biosourcés dans la cellule solaire sensibilisée par la bixine / Performances parameters of TiO2/Kaolinite photo-electrode and biosourced carbonates based electrolyte in bixin-sensitized solar cell

Rahmalia, Winda 11 July 2016 (has links)
Le développement d'un colorant naturel sensibilisateur pour les applications de cellules solaires a attiré beaucoup d'attention en raison de ses avantages inhérents, tels que son faible coût, la préparation simple, les ressources facilement disponibles et le respect de l'environnement. Toutefois, les principaux problèmes liés à la cellule solaire sensibilisée par colorant (CSSC) sont une faible photostabilité et une faible efficacité. Dans cette thèse, la bixine extrait de graines de rocou (Bixa orellana L.) a été utilisée comme sensibilisateur. Pour améliorer sa stabilité et la performance des CSSC, l’utilisation de la kaolinite activée a également été étudiée. Une CSSC à haute efficacité nécessite une photo-électrode avec une grande surface spécifique pour adsorber efficacement le colorant. Ainsi le couple TiO2/kaolinite a été préparé dans ce but. Il est considéré que la kaolinite peut confiner la lumière incidente à l'intérieur de l'électrode et peut aussi améliorer la conduction d'électrons. Dans ce système, la kaolinite a également un rôle important pour accroître la photostabilité de la bixine. Un autre facteur affectant les performances des CSSC est le rôle important de l’électrolyte. Dans ces travaux, les carbonates organiques cycliques qui ont une constante diélectrique élevée et aussi un point d’ébullition élevé (plus de 300oC) ont été évalués comme solvants de l’électrolyte. Ces travaux ont été réalisés en quatre étapes: (1) extraction, purification et caractérisation de la bixine, (2) préparation, activation et caractérisation de la kaolinite, (3) étude d’adsorption de la bixine sur la surface de la kaolinite et du TiO2, et (4) fabrication des cellules solaires sensibilisées par la bixine (CSSB). Les résultats montrent que l’extraction accélérée par solvant en utilisant un mélange de 60% de cyclohexane et 40% d’acétone peut être une méthode d’extraction efficace pour la bixine. Après purification par la chromatographie flash, la bixine est isolée avec un dégré de pureté de 99,86%. Elle est composée de 88,11% de cis-bixine et 11,75% de dicis- bixine. L’activation par l’ammoniaque de la kaolinite calcinée (la métakaolinite) est une bonne méthode pour produire la kaolinite avec une très grande surface spécifique et un rapport Si/Al élevé. L’étude d’absorption de la bixine a montré que le carbonate de diméthyle est un solvant approprié pour la bixine. Il permet à la bixine un coefficient d’absorption élevé et de bonnes caractéristiques d’adsorption sur la surface de la photo-électrode. L’adsorption de monocouche de la bixine sur la surface de TiO2 ou la surface de la kaolinite est plus favorable pour obtenir un rendement énergétique plus élevée. La présence de la métakaolinite activée dans la photo-électrode TiO2 a contribué à améliorer les performances et la stabilité de la CSSB par rapport à la CSSB fabriquée avec la photoélectrode de TiO2 pur. Ces performances sont reproductibles. L’électrolyte exerce un effet synergétique avec la métakaolinite activée en faveur de l’amélioration des paramètres électriques de la CSSB. Sous une intensité lumineuse de 200 W/m2, la CSSB comprenant une photo-électrode de TiO2 modifié par 5% de métakaolinite activée et un système électrolyte de KiI/I2 dans l’acétate de carbonate de glycérol produit un rendement énergétique de (0,050+0,006)%, ce qui est plus élevé que celui de la CSSB comprenant une photo-électrode de TiO2 pur (0,027+0,012)%. L’utilisation d’un couple redox de LiI/I2 dans l’acétate de carbonate de glycérol produit le rendement maximum (0,086+0,014)%. La fonction de stockage et de chargement d’énergie des CSSB fonctionnent bien jusqu’au troisième jour de l’analyse. A ce jour, la CSSB fabriquée en utilisant la photoélectrode de TiO2 modifiée par la métakaolinite activée est 16 fois plus stable que celle de la CSSB fabriquée en utilisant la photo-électrode de TiO2 pur. / The development of natural dye sensitizer for solar cell applications has attracted much attention because of its inherent advantages such as low cost, simple preparation, readily available resources, and low impact in the environment. However, the main problems related to dye-sensitized solar cell (DCCS) are low photostability and low efficiency. In this thesis, the bixin extracted from annatto (Bixa orellana L.) seeds was used as sensitizer. To improve its stability and the performance of the DSSC, the use of activated kaolinite was also studied. A high efficiency DSSC requires a photo-electrode with a high surface area to effectively adsorb the dye. So the couple of TiO2/kaolinite photo-electrode was prepared for this purpose. It is considered that kaolinite can confine the incident light within the electrode and can also improve the conduction of electrons. In this system, kaolinite also has an important role to increase the photostability of bixin. Another factor affecting the performance of DSSC is the important role of the electrolyte. In these studies, cyclic organic carbonates that have a high dielectric constant and also a high boiling point (above 300oC) were evaluated as solvents in the electrolyte. These works were carried out in four stages: (1) extraction, purification and characterization of bixin, (2) preparation, characterization and activation of kaolinite, (3) study of adsorption of bixin on the surface of kaolinite and TiO2, and (4) manufacturing of bixin sensitized solar cell (BSSC). The results show that the accelerated solvent extraction using a mixture of 60% cyclohexane and 40% acetone can be an effective method of extraction for bixin. After purification by flash chromatography, bixin with a degree of purity of 99.86% was isolated. It is composed of 88.11% cisbixin and 11.75% di-cis-bixin. The activation of calcined kaolinite (metakaolinite) by ammonia is a good method to produce kaolinite with very high specific surface area and a higher Si/Al ratio. The absorption study bixin has shown that the dimethyl carbonate is a suitable solvent for bixin. It allows bixin to have a high absorption coefficient and good adsorption characteristics onto the surface of the photo-electrode. The monolayer adsorption of bixin on the surface of TiO2 or kaolinite is more favorable to obtain higher energy efficiency. The presence of activated metakaolinite in the photo-electrode TiO2 has proven to improve the performance and stability of the BSSC compared to the BSSC manufactured with the pure TiO2 photo-electrode. These performances are reproducible. The electrolyte has a synergistic effect with the activated metakaolinite for improving the electrical parameters of the BSSC. Under a light intensity of 200 W/m2, the BSSC including a photo-electrode of TiO2 modified by 5% of the activated metakaolinite and KI/I2 electrolyte system in glycerol carbonate acetate produced an energy efficiency of (0.050+ 0.006)%, which is higher than that of the BSSC comprising a pure TiO2 photoelectrode (0.027+0.012)%. The use of LiI/I2 a redox couple in the glycerol carbonate acetate produces the maximum energy efficiency of (0.086+0.014)%. Its function of energy storage and loading worked well until the third day of analysis. To date, the BSSC manufactured using the photoelectrode TiO2 modified by activated metakaolinite is 16 times more stable than the BSSC manufactured using the pure TiO2 photo-electrode.
127

Synthesis and Photoinduced Electron Transfer of Donor-Sensitizer-Acceptor Systems

Xu, Yunhua January 2005 (has links)
<p>Artificial systems involving water oxidation and solar cells are promising ways for the conversion of solar energy into fuels and electricity. These systems usually consist of a photosensitizer, an electron donor and / or an electron acceptor. This thesis deals with the synthesis and photoinduced electron transfer of several donor-sensitizer-acceptor supramolecular systems.</p><p>The first part of this thesis describes the synthesis and properties of two novel dinuclear ruthenium complexes as electron donors to mimic the donor side reaction of Photosystem II. These two Ru<sub>2</sub> complexes were then covalently linked to ruthenium trisbipyridine and the properties of the resulting trinuclear complexes were studied by cyclic voltammetry and transient absorption spectroscopy.</p><p>The second part presents the synthesis and photoinduced electron transfer of covalently linked donor-sensitizer supramolecular systems in the presence of TiO<sub>2</sub> as electron acceptors. Electron donors are tyrosine, phenol and their derivatives, and dinuclear ruthenium complexes. Intramolecular electron transfer from the donor to the oxidized sensitizer was observed by transient absorption spectroscopy after light excitation of the Ru(bpy)<sub>3</sub><sup>2+</sup> moiety. The potential applications of Ru<sub>2</sub>-based electron donors in artificial systems for water oxidation and solar cells are discussed.</p><p>In the final part, the photoinduced interfacial electron transfer in the systems based on carotenoids and TiO<sub>2</sub> is studied. Carotenoids are shown to act as both sensitizers and electron donors, which could be used in artificial systems to mimic the electron transfer chain in natural photosynthesis.</p>
128

Solar cells based on synthesized nanocrystalline ZnO thin films sensitized by chlorophyll a and photopigments isolated from spinach

Nygren, Kristian January 2010 (has links)
<p>The principles of dye-sensitized solar cells were studied and are outlined in this thesis. An overview of the basic steps needed to create a DSC isfollowed by detailed experimental information on how to assemble the solar cells that were fabricated in this project. They were based on synthesizednanocrystalline ZnO thin films sensitized by chlorophyll a as well as isolated photopigments from spinach leaves. The nanocrystals werestudied using XRD, and it was confirmed that three different methods of synthesis resulted in ZnO crystals of a few nanometers. The solar cellswere assembled with Au electrodes in a sandwich configuration and their photovoltaic properties were measured. Overall light-to-electricity conversionwas low with the highest efficiency being 0.21 %. An astonishingly low efficiency of 0.0003 % was noted for a thin film which was not thermallytreated, and it is suggested that heat-treatment is of great importance. It was also found that photopigments from spinach can be extractedeasily and used as molecular sensitizer without any demanding purification steps.</p>
129

Simulations of a Ruthenium Complex and the Iodide/Triiodide Redox Couple in Aqueous Solution: Solvation and Electronic Structure

Josefsson, Ida January 2010 (has links)
<p>In dye-sensitized solar cells, the functions of light absorption and charge transport are separated. A photosensitive ruthenium-polypyridine dye in the cell absorbs light, injects an electron to a semiconductor and is then regenerated by a redox couple, typically iodide/triiodide. Quantum chemical calculations of the electronic structure of triiodide have been carried out with the restricted active space SCF method, including spin-orbit coupling, and with density functional theory. It was shown that the difference in charge density between the terminal and central atoms results in a splitting of the core levels. The calculations gave a value of the splitting of 0.8 - 1.0 eV for the <em>3d</em> and <em>4d</em> levels. Experimentally, the electronic structure has been investigated with photoelectronspectroscopy. The measured terminal/center splitting is 1.1 eV.The spin-orbit interaction of the <em>4d </em>levels of triiodide has also been calculated. The splitting was determined to be 1.6 eV. The experimental value is 1.7 eV. An assignment of the peaks in the computed spectrum of triiodide was made and the features of the experimental spectrum have beenidentied.The theoretical valence spectrum of triiodide has been computed and assigned. The results can be used in the analysis of photoelectron spectra of the molecule. Information about the electronic structure of the redox couple can help in the understanding of the electron transfer processes and forfurther development of the solar cells.  Furthermore, the solvation structure of the prototype dye, the tris(bipyridine)ruthenium(II) complex, in water and its interaction with iodide and chloride has been studied by means of molecular dynamics simulations. The trajectory analysis showed that the water molecules in the first solvation shell form a chain in between the bipyridine ligands. It was found that the iodide ions are more likely than chloride to enter between the ligands, which can be important for the electron transfer processin the solar cell.</p>
130

Interactions in Dye-sensitized Solar Cells

Greijer Agrell, Helena January 2003 (has links)
<p>The interactions between the molecular constituents in dye-sensitized solar cells were studied with UV-VIS and IR spectroscopy, Raman scattering, conductivity and electron accumulation measurements.</p><p>From stability studies of the dye, bis(tetrabutylammonium)cis-bis(thiocyanato) bis(2,2’-bipyridine-4-carboxylic acid, 4’-carboxylate) ruthenium(II), in the complete solar cell, the thiocyanate ion ligand was found to be lost from the dye. A method was developed to study mechanisms in a sealed dye-sensitized solar cell using resonance Raman scattering (RRS). RRS studies of a complete dye-sensitized solar cell including iodine and lithium iodide in the electrolyte indicate that triiodide exchange the SCN<sup>-</sup> ligand of the dye. It was proposed that an ion pair Li<sup>+</sup>…I<sub>3</sub><sup>-</sup> formation occurred, which, by a reduced electrostatic repulsion between I<sub>3</sub><sup>-</sup> and SCN<sup>-</sup> facilitated the exchange of these anions at Ru(II) of the dye. The additive 1-methylbenzimidazole suppressed the SCN<sup>-</sup>/I<sub>3</sub><sup>-</sup> ligand exchange by forming a complex with Li<sup>+</sup>.</p><p>In order to study charge transport in nanostructured TiO<sub>2</sub> films permeated with electrolyte, a technique was developed for determining activation energies of conduction, electron accumulation and effective mobility. Two regions were distinguished from the relation between conductivity and electron concentration. In the first region (~1-20 electrons per TiO<sub>2</sub> particle), which resembles best the region where the nanostructured dye-sensitized solar cell operates, the results can be fitted to some extent with a trapping/detrapping or a hopping model for charge transport, but not with a conduction band model. For the second region (> 20 electrons per TiO<sub>2</sub> particle), charge transport by electrons in the conduction band seems to be the most applicable model.</p><p>Through this work many effects from the interplay between the solar cell components were observed. These observations emphasize the importance of well-balanced interactions in dye-sensitized solar cells.</p>

Page generated in 0.0773 seconds