• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a Wire Bonding Process for Microsystems Fabricated From Polyvinyl Acetate - Nanocomposite

Barnes, Andrew Charles 12 April 2011 (has links)
No description available.
2

Dynamic interactions of interfacial polymers

Plunkett, Mark January 2002 (has links)
The relationship between the amount and conformation of apolymer at the solid-liquid interface, and the resultinginteraction forces between two such surfaces has beeninvestigated. With a degree of control of the polymerconformation, by varying the temperature, solvent quality,polymer charge density etc, it has been possible to measure andinterpret the resulting changes in the surface interactions.The recurring themes of dynamics and hydrodynamics have beencontinually considered due to the large range and viscoelasticnature of the polymeric systems. The polymeric systems investigated in this thesis are, poly(N-isopropylacrylamide), poly (12-hydroxystearate) and a seriesof AM-MAPTAC polyelectrolytes with variable chargedensities. Adsorption and conformation of polymers have beeninvestigated by the novel QCM instrument. By comparison tosimultaneously measured energy loss information, a greaterunderstanding of the conformation of the polymer has beengained, both as a function of layer build-up during initialadsorption, and as a result of induced conformational changes.Comparing the results toin situsurface plasmon resonance and subsequent x-rayphotoelectron spectroscopy measurements, the relativeconcentration of polymer within the layer is determined. Inaddition, efforts have been made to extend the scope of thetechnique, in such ways as measuring with QCM as a function oftemperature and deriving viscoelastic properties. The later isstill to be achieved in absolute terms for polymer layers inliquid environments, yet both the principle and experimentalcapabilities have been shown. Normal interaction forces have been measured as a functionof solvation of the polymer layer, for both adsorbed andgrafted polymer layers. For fully solvated (steric) polymerlayers, which can act as colloidal stabilisers, the dynamics ofthe repulsive force, including hydrodynamics have beeninvestigated. The same has been achieved for collapsed polymerlayers, in which the dynamic adhesion has also beeninvestigated. The effect on the adhesion of three differentdynamic mechanisms has been determined (which, like the surfaceforces, depend on the polymer conformation andviscoelasticity). These dynamic mechanisms are based onbridging forces, polymer entanglement and a viscoelastic‘bulk’response from the surface layers. Lateral or friction measurements have also been completed.The effect of load and rate have been investigated as afunction of both the polymer charge density and the underlyingsubstrate, which result in a variable conformation and bindingstrength to the substrate. This has resulted in a complexaddition of numerous mechanisms, the dominant mechanism beingdetermined by the binding strength to the surface, polymerconformation and viscoelasticity. The results have shown thatadsorbed polymer layers can be used to both increase anddecrease friction, and to change the direction of the ratedependence.
3

Dynamic interactions of interfacial polymers

Plunkett, Mark January 2002 (has links)
<p>The relationship between the amount and conformation of apolymer at the solid-liquid interface, and the resultinginteraction forces between two such surfaces has beeninvestigated. With a degree of control of the polymerconformation, by varying the temperature, solvent quality,polymer charge density etc, it has been possible to measure andinterpret the resulting changes in the surface interactions.The recurring themes of dynamics and hydrodynamics have beencontinually considered due to the large range and viscoelasticnature of the polymeric systems.</p><p>The polymeric systems investigated in this thesis are, poly(N-isopropylacrylamide), poly (12-hydroxystearate) and a seriesof AM-MAPTAC polyelectrolytes with variable chargedensities.</p><p>Adsorption and conformation of polymers have beeninvestigated by the novel QCM instrument. By comparison tosimultaneously measured energy loss information, a greaterunderstanding of the conformation of the polymer has beengained, both as a function of layer build-up during initialadsorption, and as a result of induced conformational changes.Comparing the results to<i>in situ</i>surface plasmon resonance and subsequent x-rayphotoelectron spectroscopy measurements, the relativeconcentration of polymer within the layer is determined. Inaddition, efforts have been made to extend the scope of thetechnique, in such ways as measuring with QCM as a function oftemperature and deriving viscoelastic properties. The later isstill to be achieved in absolute terms for polymer layers inliquid environments, yet both the principle and experimentalcapabilities have been shown.</p><p>Normal interaction forces have been measured as a functionof solvation of the polymer layer, for both adsorbed andgrafted polymer layers. For fully solvated (steric) polymerlayers, which can act as colloidal stabilisers, the dynamics ofthe repulsive force, including hydrodynamics have beeninvestigated. The same has been achieved for collapsed polymerlayers, in which the dynamic adhesion has also beeninvestigated. The effect on the adhesion of three differentdynamic mechanisms has been determined (which, like the surfaceforces, depend on the polymer conformation andviscoelasticity). These dynamic mechanisms are based onbridging forces, polymer entanglement and a viscoelastic‘bulk’response from the surface layers.</p><p>Lateral or friction measurements have also been completed.The effect of load and rate have been investigated as afunction of both the polymer charge density and the underlyingsubstrate, which result in a variable conformation and bindingstrength to the substrate. This has resulted in a complexaddition of numerous mechanisms, the dominant mechanism beingdetermined by the binding strength to the surface, polymerconformation and viscoelasticity. The results have shown thatadsorbed polymer layers can be used to both increase anddecrease friction, and to change the direction of the ratedependence.</p>
4

SYNTHESIS AND CHARACTERIZATION OF IONICALLY CROSS-LINKED NETWORKS THROUGH THE USE OF ION-PAIR COMONOMERS

Deng, Guodong 01 October 2018 (has links)
No description available.
5

Characterization of Dynamic and Static Mechanical Behavior of Polyetherimide

Mutter, Nathan J. 01 January 2012 (has links)
Polymers are increasingly being used in engineering designs due to their favorable mechanical properties such as high specific strength, corrosive resistance, manufacturing flexibility. The understanding of the mechanical behavior of these polymers under both static and dynamic loading is critical for their optimal implementation in engineering applications. One such polymer utilized in a wide variety of applications from medical instrumentation to munitions is Polyetherimide, referred to as Ultem. This thesis characterizes both the static and dynamic mechanical behavior of Ultem 1000 through experimental methods and numerical simulations. Standard compression experiments were conducted on and MTS test frame to characterize the elastic-plastic behavior of Ultem 1000 under quasi-static conditions. The dynamic response of the material was investigated at very high strain rates using a custom built miniaturized Kolsky bar apparatus. The smaller Kolsky bar configuration was chosen over the conventional Kolsky device to increase the maximum capable strain rates and to reduce common experimental problems such as wave dispersion, friction, and stress equilibrium. Since a universal test standard for this apparatus is not available, the details of the design, construction, and experimental procedures of this device are provided. The results of the high strain rate testing revealed a bilinear relationship between the material yield stress and strain rate. This relationship was modeled using the Ree-Eyring two stage activation process equation.
6

Macromolecular Engineering and Applications of Advanced Dynamic Polymers and their Nanocomposites

Dodo, Obed J. 13 July 2023 (has links)
No description available.

Page generated in 0.0627 seconds