11 |
Porovnání různých metod nelineárního výpočtu konstrukcí s hlediska rychlosti, přesnosti a robustnosti. / Comparison of various methods for nonlinear analysis of structures from the point of view of speed, accuracy and robustness.Bravenec, Ladislav January 2013 (has links)
The aim of the thesis is to compare the iterative methods which program RFEM 5 uses the non-linear calculations of structures, namely the analysis of large deformations and post critical analysis. Comparison should serve as a basis for which calculation method is the most accurate, fastest and most reliable in terms of getting results. Time-consuming will be judged according to the calculation of the solution and the time needed to compute one iterativ. Robustness we will compare the reliability of methods in in normal use. Accuracy of the calculation will be determined by comparing the maximum deformation structures. Comparison will be made with examples from practice.
|
12 |
Jaroslavice – sídlo v krajině / Jaroslavice – place in the landscapeŠmejkal, Jiří January 2018 (has links)
The theme of this diploma thesis is the architectural study of the complex of the Farm of 3D Printers in Jaroslavice. The technology of 3D printing at its speed of development has far outweighed the response to its needs. It lacks a new systematically planned building typology corresponding to the requirements of farms. Farms adapt to the spaces. The main aim of the work is to introduce the possibility of turning the situation and adapting the premises to the farms. The thesis follows the urban design of the restructuring of the Jaroslavice landscape elaborated in the previous semester. The project respects established principles at microregion level in the form of emphasis on self-sufficiency, population integrity or the use of current technologies. The land is located on the southern part of Jaroslavice. There are 3 agricultural buildings located on the property, which until 2010, when a photovoltaic power plant was built, operated in conjunction with a neighboring agricultural court. After the power plant was built, the bonds were irreversibly broken. Buildings are in a very poor condition and mutual cooperation no longer works. The existing solution replaces and shows the possibility of using solar energy in a different way. Thus, the construction cartridge works with a hybrid typology where the 3D production area is combined with the maximum solar gains of the photovoltaic panels. Generative methods have been used to design dominantly either for finding a form in terms of achieving maximum solar gains or after verifying the efficiency of the structure. The proposal has several scenarios of possible development. There are four different stages of growth and the linkage of production areas. Printers are able to replicate themselves at such a rate that they can expect rapid growth. The proposal uses controlled growth methods to simulate complex development under the conditions of maximum solar radiation. Visual distraction and overheating are also solved by atypical sunsets on the exterior façade. Thin-film photovoltaic panels are used on the sun, so it is able to produce electricity besides the shield. The energy-efficient shape along with the great advantage of the layout solution, instead of the corridor disposition, is a basic cell on the central plan view. This makes it possible to control and operate more of the machines more efficiently. The production site forwards counts full robot automation.
|
13 |
Multi-hazard analysis of steel structures subjected to fire following earthquakeCovi, Patrick 30 July 2021 (has links)
Fires following earthquake (FFE) have historically produced enormous post-earthquake damage and losses in terms of lives, buildings and economic costs, like the San Francisco earthquake (1906), the Kobe earthquake (1995), the Turkey earthquake (2011), the Tohoku earthquake (2011) and the Christchurch earthquakes (2011). The structural fire performance can worsen significantly because the fire acts on a structure damaged by the seismic event. On these premises, the purpose of this work is the investigation of the experimental and numerical response of structural and non-structural components of steel structures subjected to fire following earthquake (FFE) to increase the knowledge and provide a robust framework for hybrid fire testing and hybrid fire following earthquake testing. A partitioned algorithm to test a real case study with substructuring techniques was developed. The framework is developed in MATLAB and it is also based on the implementation of nonlinear finite elements to model the effects of earthquake forces and post-earthquake effects such as fire and thermal loads on structures. These elements should be able to capture geometrical and mechanical non-linearities to deal with large displacements. Two numerical validation procedures of the partitioned algorithm simulating two virtual hybrid fire testing and one virtual hybrid seismic testing were carried out. Two sets of experimental tests in two different laboratories were performed to provide valuable data for the calibration and comparison of numerical finite element case studies reproducing the conditions used in the tests. Another goal of this thesis is to develop a fire following earthquake numerical framework based on a modified version of the OpenSees software and several scripts developed in MATLAB to perform probabilistic analyses of structures subjected to FFE. A new material class, namely SteelFFEThermal, was implemented to simulate the steel behaviour subjected to FFE events.
|
Page generated in 0.1118 seconds