Spelling suggestions: "subject:"dynamical evolution anda stability"" "subject:"dynamical evolution ando stability""
1 |
SPITZER OBSERVATIONS OF EXOPLANETS DISCOVERED WITH THE KEPLER K2 MISSIONBeichman, Charles, Livingston, John, Werner, Michael, Gorjian, Varoujan, Krick, Jessica, Deck, Katherine, Knutson, Heather, Wong, Ian, Petigura, Erik, Christiansen, Jessie, Ciardi, David, Greene, Thomas P., Schlieder, Joshua E., Line, Mike, Crossfield, Ian, Howard, Andrew, Sinukoff, Evan 04 May 2016 (has links)
We have used the Spitzer Space Telescope to observe two transiting planetary systems orbiting low-mass stars discovered in the Kepler K2 mission. The system K2-3 (EPIC 201367065) hosts three planets, while K2-26 (EPIC 202083828) hosts a single planet. Observations of all four objects in these two systems confirm and refine the orbital and physical parameters of the planets. The refined orbital information and more precise planet radii possible with Spitzer will be critical for future observations of these and other K2 targets. For K2-3b we find marginally significant evidence for a transit timing variation between the K2 and Spitzer epochs.
|
2 |
CORRALLING A DISTANT PLANET WITH EXTREME RESONANT KUIPER BELT OBJECTSMalhotra, Renu, Volk, Kathryn, Wang, Xianyu 15 June 2016 (has links)
The four longest period Kuiper Belt objects have orbital periods close to integer ratios with each other. A hypothetical planet with an orbital period of similar to 17,117 years and a semimajor axis similar to 665 au would have N/1 and N/2 period ratios with these four objects. The orbital geometries and dynamics of resonant orbits constrain the orbital plane, the orbital eccentricity, and the mass of such a planet as well as its current location in its orbital path.
|
3 |
ORBITAL STABILITY OF MULTI-PLANET SYSTEMS: BEHAVIOR AT HIGH MASSESMorrison, Sarah J., Kratter, Kaitlin M. 27 May 2016 (has links)
In the coming years, high-contrast imaging surveys are expected to reveal the characteristics of the population of wide-orbit, massive, exoplanets. To date, a handful of wide planetary mass companions are known, but only one such multi-planet system has been discovered: HR 8799. For low mass planetary systems, multi-planet interactions play an important role in setting system architecture. In this paper, we explore the stability of these high mass, multi-planet systems. While empirical relationships exist that predict how system stability scales with planet spacing at low masses, we show that extrapolating to super-Jupiter masses can lead to up to an order of magnitude overestimate of stability for massive, tightly packed systems. We show that at both low and high planet masses, overlapping mean-motion resonances trigger chaotic orbital evolution, which leads to system instability. We attribute some of the difference in behavior as a function of mass to the increasing importance of second order resonances at high planet-star mass ratios. We use our tailored high mass planet results to estimate the maximum number of planets that might reside in double component debris disk systems, whose gaps may indicate the presence of massive bodies.
|
4 |
The Fate of Debris in the Pluto-Charon SystemSmullen, Rachel A., Kratter, Kaitlin M. 04 January 2017 (has links)
The Pluto-Charon system has come into sharper focus following the flyby of New Horizons. We use N-body simulations to probe the unique dynamical history of this binary dwarf planet system. We follow the evolution of the debris disc that might have formed during the Charon-forming giant impact. First, we note that in situ formation of the four circumbinary moons is extremely difficult if Charon undergoes eccentric tidal evolution. We track collisions of disc debris with Charon, estimating that hundreds to hundreds of thousands of visible craters might arise from 0.3-5 km radius bodies. New Horizons data suggesting a dearth of these small craters may place constraints on the disc properties. While tidal heating will erase some of the cratering history, both tidal and radiogenic heating may also make it possible to differentiate disc debris craters from Kuiper belt object craters. We also track the debris ejected from the Pluto-Charon system into the Solar system; while most of this debris is ultimately lost from the Solar system, a few tens of 10-30 km radius bodies could survive as a Pluto-Charon collisional family. Most are plutinos in the 3: 2 resonance with Neptune, while a small number populate nearby resonances. We show that migration of the giant planets early in the Solar system's history would not destroy this collisional family. Finally, we suggest that identification of such a family would likely need to be based on composition as they show minimal clustering in relevant orbital parameters.
|
5 |
Mean Motion Resonances at High Eccentricities: The 2:1 and the 3:2 Interior ResonancesWang, Xianyu, Malhotra, Renu 22 June 2017 (has links)
Mean motion resonances (MMRs) play an important role in the formation and evolution of planetary systems and have significantly influenced the orbital properties and distribution of planets and minor planets in the solar system and in. exoplanetary systems. Most previous theoretical analyses have focused on the low- to moderate-eccentricity regime, but with new discoveries of high-eccentricity resonant minor planets and even exoplanets, there is increasing motivation to examine MMRs in the high-eccentricity regime. Here we report on a study of the high-eccentricity regime of MMRs in the circular planar restricted three-body problem. Numerical analyses of the 2: 1 and the 3: 2 interior resonances are carried out for a wide range of planet-to-star mass ratio mu, and for a wide range of eccentricity of the test particle. The surface-of-section technique is used to study the phase space structure near resonances. We find that new stable libration zones appear at higher eccentricity at libration centers that are. shifted from those at low eccentricities. We provide physically intuitive explanations for these transitions in phase space, and we present novel results on the mass and eccentricity dependence of the resonance widths. Our results show that MMRs have sizable libration zones at high eccentricities, comparable to those at lower eccentricities.
|
6 |
Exoplanets in Open Clusters and Binaries: New Constraints on Planetary MigrationQuinn, Samuel N 12 August 2016 (has links)
In this dissertation, we present three complementary studies of the processes that drive planetary migration. The first is a radial-velocity survey in search of giant planets in adolescent (<1 >Gyr) open clusters. While several different mechanisms may act to drive giant planets inward, only some mechanisms will excite high eccentricities while doing so. Measuring the eccentricities of young hot Jupiters in these clusters (at a time before the orbits have had a chance to circularize due to tidal friction with their host stars) will allow us to identify which mechanisms are most important. Through this survey, we detect the first 3 hot Jupiters in open clusters (and at least 4 long-period planets), and we measure the occurrence rate of hot Jupiters in clusters to be similar to that of the field (~1%). We determine via analyses of hot Jupiter eccentricities and outer companions in these systems that high eccentricity migration mechanisms (those requiring the presence of a third body) are important for migration. The second project, an adaptive optics imaging survey for stellar companions to known hot Jupiter hosts, aims to determine the role that stellar companions in particular play in giant planet migration. Through a preliminary analysis, we derive a lower limit on the binary frequency of 45% (greater than that of the typical field star), and we find that the presence of a companion is correlated with misalignment of the spin-orbit angle of the planetary system, as would be expected for stellar Kozai-Lidov migration: at least 74% of misaligned systems reside in binaries. We thus conclude that among high eccentricity migration mechanisms, those requiring a stellar companion play a significant role. Finally, we describe simulations of measurements of the planet population expected to be discovered by TESS, and use these to demonstrate that a strong constraint on the obliquity distribution of small planets can be derived using only TESS photometry, Gaia astrometry, and vsin(i) measurements of the host stars. This obliquity distribution will be a key piece of evidence to help detemine the likely formation and migration histories of small planets, and can contribute to the assessment of the potential for Earth-like planets to harbor life.
|
7 |
FRIENDS OF HOT JUPITERS. IV. STELLAR COMPANIONS BEYOND 50 au MIGHT FACILITATE GIANT PLANET FORMATION, BUT MOST ARE UNLIKELY TO CAUSE KOZAI–LIDOV MIGRATIONNgo, Henry, Knutson, Heather A., Hinkley, Sasha, Bryan, Marta, Crepp, Justin R., Batygin, Konstantin, Crossfield, Ian, Hansen, Brad, Howard, Andrew W., Johnson, John A., Mawet, Dimitri, Morton, Timothy D., Muirhead, Philip S., Wang, Ji 03 August 2016 (has links)
Stellar companions can influence the formation and evolution of planetary systems, but there are currently few observational constraints on the properties of planet-hosting binary star systems. We search for stellar companions around 77 transiting hot Jupiter systems to explore the statistical properties of this population of companions as compared to field stars of similar spectral type. After correcting for survey incompleteness, we find that 47% +/- 7% of hot Jupiter systems have stellar companions with semimajor axes between 50 and 2000 au. This is 2.9 times larger than the field star companion fraction in this separation range, with a significance of 4.4 sigma. In the 1-50 au range, only 3.9(-2.0)(+4.5)% of hot Jupiters host stellar companions, compared to the field star value of 16.4% +/- 0.7%, which is a 2.7 sigma difference. We find that the distribution of mass ratios for stellar companions to hot Jupiter systems peaks at small values and therefore differs from that of field star binaries which tend to be uniformly distributed across all mass ratios. We conclude that either wide separation stellar binaries are more favorable sites for gas giant planet formation at all separations, or that the presence of stellar companions preferentially causes the inward migration of gas giant planets that formed farther out in the disk via dynamical processes such as Kozai-Lidov oscillations. We determine that less than 20% of hot Jupiters have stellar companions capable of inducing Kozai-Lidov oscillations assuming initial semimajor axes between 1 and 5 au, implying that the enhanced companion occurrence is likely correlated with environments where gas giants can form efficiently.
|
8 |
Planet-induced Stellar Pulsations in HAT-P-2's Eccentric SystemWit, Julien de, Lewis, Nikole K., Knutson, Heather A., Fuller, Jim, Antoci, Victoria, Fulton, Benjamin J., Laughlin, Gregory, Deming, Drake, Shporer, Avi, Batygin, Konstantin, Cowan, Nicolas B., Agol, Eric, Burrows, Adam S., Fortney, Jonathan J., Langton, Jonathan, Showman, Adam P. 14 February 2017 (has links)
Extrasolar planets on eccentric short-period orbits provide a laboratory in which to study radiative and tidal interactions between a planet and its host star under extreme forcing conditions. Studying such systems probes how the planet's atmosphere redistributes the time-varying heat flux from its host and how the host star responds to transient tidal distortion. Here, we report the insights into the planet-star interactions in HAT-P-2's eccentric planetary system gained from the analysis of similar to 350 hr of 4.5 mu m observations with the Spitzer Space Telescope. The observations show no sign of orbit-to-orbit variability nor of orbital evolution of the eccentric planetary companion, HAT-P-2b. The extensive coverage allows us to better differentiate instrumental systematics from the transient heating of HAT-P-2b's 4.5 mu m photosphere and yields the detection of stellar pulsations with an amplitude of approximately 40 ppm. These pulsation modes correspond to exact harmonics of the planet's orbital frequency, indicative of a tidal origin. Transient tidal effects can excite pulsation modes in the envelope of a star, but, to date, such pulsations had only been detected in highly eccentric stellar binaries. Current stellar models are unable to reproduce HAT-P-2's pulsations, suggesting that our understanding of the interactions at play in this system is incomplete.
|
9 |
Evolution et habitabilité de systèmes planétaires autour d’étoiles de faible masse et de naines brunes / Evolution and habitability of planetary systems orbiting low mass stars and brown dwarfsBolmont, Emeline 13 November 2013 (has links)
La découverte de plus de 900 planètes autour d’autres étoiles que le Soleil rend notre époque excitante. Ces systèmes planétaires nous ont fait changer notre perception du monde qui était jusqu’alors basée sur nos connaissances du système solaire. Certains systèmes détectés sont beaucoup plus compacts que notre système solaire et les planètes se trouvent extrêmement proches de leur étoile. Pour comprendre la structure de ces systèmes et leur évolution, il est important d’étudier les effets de marée.Les missions d’observations des exoplanètes commencent à détecter des planètes de moins en moins massives dans la zone autour d’une étoile appelée zone habitable. La zone habitable est définie comme la plage de distances orbitales pour laquelle une planète ayant une atmosphère peut avoir de l’eau liquide à sa surface. L’étude du climat des exoplanètes, étant donné un flux et un spectre stellaire, est importante pour la caractérisation de l’atmosphère de ces exoplanètes (que JWST sera en mesure de faire).Dans cette thèse, ces problématiques d’évolution dynamique de systèmes planétaires et de climats de planètes sont développées pour le cas de systèmes planétaires orbitant des naines brunes et des étoiles de faible masse dans le but futur de contraindre des paramètres des modèles de marée ou des observations. Dans un premier temps, j’ai traité le cas de l’évolution par effet de marée d’une planète orbitant une naine brune, une naine M ou une étoile de type solaire dont l’évolution du rayon est prise en compte. L’objectif était d’étudier l’influence de la contraction de l’étoile (ou naine brune) sur l’évolution orbitale des planètes. Dans un deuxième temps, j’ai cherché à étudier l’influence des effets de marée sur l’évolution dynamique d’un système multiplanétaire orbitant une naine brune, une naine M ou une étoile de type solaire dont l’évolution du rayon est aussi prise en compte.Ces deux projets permettent d’aborder le problème de l’habitabilité des planètes au- tour de ces objets, en particulier autour des naines brunes qui refroidissent avec le temps. En effet, une planète se trouvant dans la zone habitable d’une naine brune se situe suffisamment proche de la naine brune pour ressentir l’influence des effets de marée. Ainsi, des paramètres importants pour l’étude des climats sont en partie déterminés par les effets de marée – paramètres comme l’excentricité et l’obliquité entre autres. Dans cette thèse, cette problématique est succinctement abordée en vue d’une poursuite en post-doctorat. / The discovery of more than 900 planets orbiting other stars than our Sun makes this period very exciting. Our knowledge which was based on the Solar System has been challenged by new planetary systems which are very different from our system. Some of them are much more compact than the Solar System. Some planets are located extremely close-in from their star, within the orbital distance of Mercury, in a region where tidal effects are important. Understanding the structure of the known exoplanetary systems and the future ones requires to take into account the physics of tidal evolution.The missions dedicated to the finding of exoplanets are beginning to detect less massive planets in the habitable zone of their host star. The habitable zone is here defined as the range of orbital distances where a planet with an atmosphere can sustain liquid water at its surface. The study of the climate of exoplanets, given a stellar flux and spectra, is important for the characterization of planetary atmosphere – which JWST will make possible.This thesis provides a study of the dynamical and tidal evolution of planetary systems orbiting evolving brown dwarfs and low mass stars in order to constrain some tidal parameters and in the case of planets around brown dwarfs put some constrains on observability. First, I studied the tidal evolution of single-planet systems orbiting a brown dwarf, a M-dwarf or a Sun-like star whose radius evolution is taken into account. The aim of this study was to study the influence of the contraction of the brown dwarf or star on the orbital evolution of the planets. Second, I endeavored to study the tidal evolution of multiple-planet systems orbiting a brown dwarf, a M-dwarf or a Sun-like star whose radius evolution is also taken into account.These two projects allow me to study the question of the habitability of planets orbiting those objects, in particular orbiting brown dwarfs which are known to cool down with time. A planet orbiting a brown dwarf in its habitable zone is sufficiently close to the brown dwarf to feel tidal effects. So parameters such as the eccentricity or obliquity, which are important for the climate are partially determined by tides. In this thesis, this question is briefly addressed but will be deepened in a future post-doc.
|
Page generated in 0.1728 seconds