• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • 1
  • Tagged with
  • 13
  • 13
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hardware software partitioning : a reconfigurable and evolutionary computing approach

Harkin, James January 2001 (has links)
No description available.
2

Dynamically reconfigurable asynchronous processor

Fawaz, Khodor Ahmad January 2012 (has links)
The main design requirements for today's mobile applications are: · high throughput performance. · high energy efficiency. · high programmability. Until now, the choice of platform has often been limited to Application-Specific Integrated Circuits (ASICs), due to their best-of-breed performance and power consumption. The economies of scale possible with these high-volume markets have traditionally been able to hide the high Non-Recurring Engineering (NRE) costs required for designing and fabricating new ASICs. However, with the NREs and design time escalating with each generation of mobile applications, this practice may be reaching its limit. Designers today are looking at programmable solutions, so that they can respond more rapidly to changes in the market and spread costs over several generations of mobile applications. However, there have been few feasible alternatives to ASICs: Digital Signals Processors (DSPs) and microprocessors cannot meet the throughput requirements, whereas Field-Programmable Gate Arrays (FPGAs) require too much area and power. Coarse-grained dynamically reconfigurable architectures offer better solutions for high throughput applications, when power and area considerations are taken into account. One promising example is the Reconfigurable Instruction Cell Array (RICA). RICA consists of an array of cells with an interconnect that can be dynamically reconfigured on every cycle. This allows quite complex datapaths to be rendered onto the fabric and executed in a single configuration - making these architectures particularly suitable to stream processing. Furthermore, RICA can be programmed from C, making it a good fit with existing design methodologies. However the RICA architecture has a drawback: poor scalability in terms of area and power. As the core gets bigger, the number of sequential elements in the array must be increased significantly to maintain the ability to achieve high throughputs through pipelining. As a result, a larger clock tree is required to synchronise the increased number of sequential elements. The clock tree therefore takes up a larger percentage of the area and power consumption of the core. This thesis presents a novel Dynamically Reconfigurable Asynchronous Processor (DRAP), aimed at high-throughput mobile applications. DRAP is based on the RICA architecture, but uses asynchronous design techniques - methods of designing digital systems without clocks. The absence of a global clock signal makes DRAP more scalable in terms of power and area overhead than its synchronous counterpart. The DRAP architecture maintains most of the benefits of custom asynchronous design, whilst also providing programmability via conventional high-level languages. Results show that the DRAP processor delivers considerably lower power consumption when compared to a market-leading Very Long Instruction Word (VLIW) processor and a low-power ARM processor. For example, DRAP resulted in a reduction in power consumption of 20 times compared to the ARM7 processor, and 29 times compared to the TIC64x VLIW, when running the same benchmark capped to the same throughput and for the same process technology (0.13μm). When compared to an equivalent RICA design, DRAP was up to 22% larger than RICA but resulted in a power reduction of up to 1.9 times. It was also capable of achieving up to 2.8 times higher throughputs than RICA for the same benchmarks.
3

Implementation of Logic Fault Tolerance on a Dynamically Reconfigurable FPGA

Jayarama, Kiran January 2016 (has links)
No description available.
4

Dynamically reconfigurable architecture for third generation mobile systems

Alsolaim, Ahmad M. January 2002 (has links)
No description available.
5

ADAPTIVE ONLINE PERFORMANCE AND POWER ESTIMATION FRAMEWORK FOR DYNAMIC RECONFIGURABLE EMBEDDED SYSTEMS

Mu, Jingqing January 2011 (has links)
Runtime dynamic reconfiguration of field-programmable gate arrays (FPGAs) and devices incorporating microprocessors and FPGA has been successfully utilized to increase performance and reduce power consumption. While previous methods have been successful, they typically do not consider the runtime behavior of the application that can be significantly affected by variations in data inputs, user interactions, and environmental conditions. In this dissertation, we present a dynamically reconfigurable system and design methodology that optimizes performance and power consumption by determining which coprocessors to implement with an FPGA based upon the current application behavior.For dynamically reconfigurable systems, in which the selection of hardware coprocessors to implement within the FPGA is determined at runtime, online estimation methods are essential to evaluate the performance and power consumption impact of the hardware coprocessor selection. We present a base profile assisted online system-level performance and power estimation framework for estimating the speedup and power consumption of dynamically reconfigurable embedded systems.Importantly though, complex interactions between multiple application tasks, non-deterministic execution behavior, and effects of operating system scheduling introduce significant challenges. To address these, we further present an adaptive online performance and power estimation framework suing kernel speedup coefficient adaptation that monitors and adapts the changing application and system behavior for multitasked applications. By exhaustively examining predefined voltage and frequency settings for the microprocessor and hardware kernels, the potential speedup and power reduction can be effectively estimated for each configuration and voltage/frequency settings. These estimates can be utilized to determine the optimal system configuration. At the same time, the kernel speedup coefficients for each kernel can be dynamically updated to account for the difference between the estimated and actual performance measured at runtime.Finally, in order to quickly determine kernel selection and voltage and frequency settlings, we present an efficient, online heuristic performance and power estimation framework that significantly decreases execution time at the cost of a small increase in power consumption. This online heuristic estimation framework achieves significant power reduction compared to software only implementation without performance degradation.
6

Dynamically Reconfigurable Systolic Array Accelerators: A Case Study with Extended Kalman Filter and Discrete Wavelet Transform Algorithms

Barnes, Robert C 01 May 2009 (has links)
Field programmable grid arrays (FPGA) are increasingly being adopted as the primary on-board computing system for autonomous deep space vehicles. There is a need to support several complex applications for navigation and image processing in a rapidly responsive on-board FPGA-based computer. This requires exploring and combining several design concepts such as systolic arrays, hardware-software partitioning, and partial dynamic reconfiguration. A microprocessor/co-processor design that can accelerate two single precision oating-point algorithms, extended Kalman lter and a discrete wavelet transform, is presented. This research makes three key contributions. (i) A polymorphic systolic array framework comprising of recofigurable partial region-based sockets to accelerate algorithms amenable to being mapped onto linear systolic arrays. When implemented on a low end Xilinx Virtex4 SX35 FPGA the design provides a speedup of at least 4.18x and 6.61x over a state of the art microprocessor used in spacecraft systems for the extended Kalman lter and discrete wavelet transform algorithms, respectively. (ii) Switchboxes to enable communication between static and partial reconfigurable regions and a simple protocol to enable schedule changes when a socket's contents are dynamically reconfigured to alter the concurrency of the participating systolic arrays. (iii) A hybrid partial dynamic reconfiguration method that combines Xilinx early access partial reconfiguration, on-chip bitstream decompression, and bitstream relocation to enable fast scaling of systolic arrays on the PolySAF. This technique provided a 2.7x improvement in reconfiguration time compared to an o-chip partial reconfiguration technique that used a Flash card on the FPGA board, and a 44% improvement in BRAM usage compared to not using compression.
7

Communication centric platforms for future high data intensive applications

Ahmad, Balal January 2009 (has links)
The notion of platform based design is considered as a viable solution to boost the design productivity by favouring reuse design methodology. With the scaling down of device feature size and scaling up of design complexity, throughput limitations, signal integrity and signal latency are becoming a bottleneck in future communication centric System-on-Chip (SoC) design. This has given birth to communication centric platform based designs. Development of heterogeneous multi-core architectures has caused the on-chip communication medium tailored for a specific application domain to deal with multidomain traffic patterns. This makes the current application specific communication centric platforms unsuitable for future SoC architectures. The work presented in this thesis, endeavours to explore the current communication media to establish the expectations from future on-chip interconnects. A novel communication centric platform based design flow is proposed, which consists of four communication centric platforms that are based on shared global bus, hierarchical bus, crossbars and a novel hybrid communication medium. Developed with a smart platform controller, the platforms support Open Core Protocol (OCP) socket standard, allowing cores to integrate in a plug and play fashion without the need to reprogram the pre-verified platforms. This drastically reduces the design time of SoC architectures. Each communication centric platform has different throughput, area and power characteristics, thus, depending on the design constraints, processing cores can be integrated to the most appropriate communication platform to realise the desired SoC architecture. A novel hybrid communication medium is also developed in this thesis, which combines the advantages of two different types of communication media in a single SoC architecture. The hybrid communication medium consists of crossbar matrix and shared bus medium . Simulation results and implementation of WiMAX receiver as a real-life example shows a 65% increase in data throughput than shared bus based communication medium, 13% decrease in area and 11% decrease in power than crossbar based communication medium. In order to automate the generation of SoC architectures with optimised communication architectures, a tool called SOCCAD (SoC Communication architecture development) is developed. Components needed for the realisation of the given application can be selected from the tool’s in-built library. Offering an optimised communication centric placement, the tool generates the complete SystemC code for the system with different interconnect architectures, along with its power and area characteristics. The generated SystemC code can be used for quick simulation and coupled with efficient test benches can be used for quick verification. Network-on-Chip (NoC) is considered as a solution to the communication bottleneck in future SoC architectures with data throughput requirements of over 10GB/s. It aims to provide low power, efficient link utilisation, reduced data contention and reduced area on silicon. Current on-chip networks, developed with fixed architectural parameters, do not utilise the available resources efficiently. To increase this efficiency, a novel dynamically reconfigurable NoC (drNoC) is developed in this thesis. The proposed drNoC reconfigures itself in terms of switching, routing and packet size with the changing communication requirements of the system at run time, thus utilising the maximum available channel bandwidth. In order to increase the applicability of drNoC, the network interface is designed to support OCP socket standard. This makes drNoC a highly reuseable communication framework, qualifying it as a communication centric platform for high data intensive SoC architectures. Simulation results show a 32% increase in data throughput and 22-35% decrease in network delay when compared with a traditional NoC with fixed parameters.
8

Metodologia de projeto de sistemas dinamicamente reconfiguráveis. / Design methodologies of dynamically reconfigurable systems.

Leandro Kojima 20 April 2007 (has links)
FPGAs (Field Programmable Gate Arrays) dinamicamente reconfiguráveis (DR-FPGAs) são soluções promissoras para muitos sistemas embarcados devido a potencial redução de área de silício. Metodologias de projeto e ferramentas CAD relacionadas são ainda muito limitadas para auxiliarem os projetistas a encontrarem soluções dinamicamente reconfiguráveis para diferentes aplicações. Este trabalho propõe uma metodologia de projeto que combina modelos de alto nível em SystemC, técnicas de projeto de baixo nível e a metodologia de projeto modular da XILINX. SystemC foi utilizada para representar o comportamento de alto nível não temporizado e não-RTL, bem como o baixo nível RTL-DCS (Chaveamento Dinâmico de Circuitos). Um estudo de caso da Banda Base de um Controlador Bluetooth foi desenvolvido. Duas partições temporais foram testadas em nove diferentes DR-FPGAs. A exploração espacial mostrou que 33% das soluções investigadas atenderam a restrição da especificação de 625µs de tempo do quadro do pacote Bluetooth, deixando diferentes parcelas de recursos livres que podem ser explorados para acomodar outros módulos IP de sistemas mais complexos no mesmo dispositivo. / Dynamically Reconfigurable Field Programmable Gate Arrays (DR-FPGAs) are promising solutions for many embedded systems due to the potential silicon area reduction. Design methodologies and related CAD tools are still very limited to assist designers to encounter dynamically reconfigurable solutions for different applications. This work proposes a design methodology that combines high level SystemC models and design techniques with the low level modular design proposed by Xilinx. SystemC has been used to represent the high level untimed non-RTL behavior as well as the low level RTL-DCS (Dynamic Circuit Switching). A Bluetooth Baseband unit case study was performed. Two temporal-functional partitions were evaluated on nine different target DR-FPGAs. The design space exploration showed that 33% of the investigated solutions complied with the 625µs Bluetooth packet time frame specification leaving different amounts if free resources that may be explored to accommodate other IP modules of more complex systems on the same device.
9

Metodologia de projeto de sistemas dinamicamente reconfiguráveis. / Design methodologies of dynamically reconfigurable systems.

Kojima, Leandro 20 April 2007 (has links)
FPGAs (Field Programmable Gate Arrays) dinamicamente reconfiguráveis (DR-FPGAs) são soluções promissoras para muitos sistemas embarcados devido a potencial redução de área de silício. Metodologias de projeto e ferramentas CAD relacionadas são ainda muito limitadas para auxiliarem os projetistas a encontrarem soluções dinamicamente reconfiguráveis para diferentes aplicações. Este trabalho propõe uma metodologia de projeto que combina modelos de alto nível em SystemC, técnicas de projeto de baixo nível e a metodologia de projeto modular da XILINX. SystemC foi utilizada para representar o comportamento de alto nível não temporizado e não-RTL, bem como o baixo nível RTL-DCS (Chaveamento Dinâmico de Circuitos). Um estudo de caso da Banda Base de um Controlador Bluetooth foi desenvolvido. Duas partições temporais foram testadas em nove diferentes DR-FPGAs. A exploração espacial mostrou que 33% das soluções investigadas atenderam a restrição da especificação de 625µs de tempo do quadro do pacote Bluetooth, deixando diferentes parcelas de recursos livres que podem ser explorados para acomodar outros módulos IP de sistemas mais complexos no mesmo dispositivo. / Dynamically Reconfigurable Field Programmable Gate Arrays (DR-FPGAs) are promising solutions for many embedded systems due to the potential silicon area reduction. Design methodologies and related CAD tools are still very limited to assist designers to encounter dynamically reconfigurable solutions for different applications. This work proposes a design methodology that combines high level SystemC models and design techniques with the low level modular design proposed by Xilinx. SystemC has been used to represent the high level untimed non-RTL behavior as well as the low level RTL-DCS (Dynamic Circuit Switching). A Bluetooth Baseband unit case study was performed. Two temporal-functional partitions were evaluated on nine different target DR-FPGAs. The design space exploration showed that 33% of the investigated solutions complied with the 625µs Bluetooth packet time frame specification leaving different amounts if free resources that may be explored to accommodate other IP modules of more complex systems on the same device.
10

Conception de systèmes embarqués fiables et auto-réglables : applications sur les systèmes de transport ferroviaire / Design of self-tuning reliable embedded systems and its application in railway transportation systems

Alouani, Ihsen 26 April 2016 (has links)
Un énorme progrès dans les performances des semiconducteurs a été accompli ces dernières années. Avec l’´émergence d’applications complexes, les systèmes embarqués doivent être à la fois performants et fiables. Une multitude de travaux ont été proposés pour améliorer l’efficacité des systèmes embarqués en réduisant le décalage entre la flexibilité des solutions logicielles et la haute performance des solutions matérielles. En vertu de leur nature reconfigurable, les FPGAs (Field Programmable Gate Arrays) représentent un pas considérable pour réduire ce décalage performance/flexibilité. Cependant, la reconfiguration dynamique a toujours souffert d’une limitation liée à la latence de reconfiguration.Dans cette thèse, une nouvelle technique de reconfiguration dynamiqueau niveau ”grain-moyen” pour les circuits à base de blocks DSP48E1 est proposée. L’idée est de profiter de la reprogrammabilité des blocks DSP48E1 couplée avec un circuit d’interconnection reconfigurable afin de changer la fonction implémentée par le circuit en un cycle horloge. D’autre part, comme les nouvelles technologies s’appuient sur la réduction des dimensions des transistors ainsi que les tensions d’alimentation, les circuits électroniques sont devenus de plus en plus susceptibles aux fautes transitoires. L’impact de ces erreurs au niveau système peut être catastrophique et les SETs (Single Event Transients) sont devenus une menace tangible à la fiabilité des systèmes embarqués, en l’occurrence pour les applications critiques comme les systèmes de transport. Les techniques de fiabilité qui se basent sur des taux d’erreurs (SERs) surestimés peuvent conduire à un gaspillage de ressources et par conséquent un cout en consommation de puissance électrique. Il est primordial de prendre en compte le phénomène de masquage d’erreur pour une estimation précise des SERs.Cette thèse propose une nouvelle modélisation inter-couches de la vulnérabilité des circuits qui combine les mécanismes de masquage au niveau transistor (TLM) et le masquage au niveau Système (SLM). Ce modèle est ensuite utilisé afin de construire une architecture adaptative tolérante aux fautes qui évalue la vulnérabilité effective du circuit en runtime. La stratégie d’amélioration de fiabilité est adaptée pour ne protéger que les parties vulnérables du système, ce qui engendre un circuit fiable avec un cout optimisé. Les expérimentations effectuées sur un système de détection d’obstacles à base de radar pour le transport ferroviaire montre que l’approche proposée permet d’´établir un compromis fiabilité/ressources utilisées. / During the last few decades, a tremendous progress in the performance of semiconductor devices has been accomplished. In this emerging era of high performance applications, machines need not only to be efficient but also need to be dependable at circuit and system levels. Several works have been proposed to increase embedded systems efficiency by reducing the gap between software flexibility and hardware high-performance. Due to their reconfigurable aspect, Field Programmable Gate Arrays (FPGAs) represented a relevant step towards bridging this performance/flexibility gap. Nevertheless, Dynamic Reconfiguration (DR) has been continuously suffering from a bottleneck corresponding to a long reconfiguration time.In this thesis, we propose a novel medium-grained high-speed dynamic reconfiguration technique for DSP48E1-based circuits. The idea is to take advantage of the DSP48E1 slices runtime reprogrammability coupled with a re-routable interconnection block to change the overall circuit functionality in one clock cycle. In addition to the embedded systems efficiency, this thesis deals with the reliability chanllenges in new sub-micron electronic systems. In fact, as new technologies rely on reduced transistor size and lower supply voltages to improve performance, electronic circuits are becoming remarkably sensitive and increasingly susceptible to transient errors. The system-level impact of these errors can be far-reaching and Single Event Transients (SETs) have become a serious threat to embedded systems reliability, especially for especially for safety critical applications such as transportation systems. The reliability enhancement techniques that are based on overestimated soft error rates (SERs) can lead to unnecessary resource overheads as well as high power consumption. Considering error masking phenomena is a fundamental element for an accurate estimation of SERs.This thesis proposes a new cross-layer model of circuits vulnerability based on a combined modeling of Transistor Level (TLM) and System Level Masking (SLM) mechanisms. We then use this model to build a self adaptive fault tolerant architecture that evaluates the circuit’s effective vulnerability at runtime. Accordingly, the reliability enhancement strategy is adapted to protect only vulnerable parts of the system leading to a reliable circuit with optimized overheads. Experimentations performed on a radar-based obstacle detection system for railway transportation show that the proposed approach allows relevant reliability/resource utilization tradeoffs.

Page generated in 0.0803 seconds