• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 130
  • 63
  • 16
  • Tagged with
  • 213
  • 213
  • 75
  • 74
  • 55
  • 45
  • 42
  • 39
  • 39
  • 36
  • 31
  • 30
  • 28
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Transfert instationnaire de chaleur en échangeur récupérateur de moteur de fusée simulation expérimentale en échangeur bitube /

Jacquot, Cédric Feidt, Michel January 2007 (has links) (PDF)
Thèse doctorat : Mécanique et Energétique : Nancy 1 : 2007. / Titre provenant de l'écran-titre.
22

Étude numérique de l'écoulement transitoire dans une zone flottante : la transition axisymétrique/oscillatoire

Bazzi, Hussein. January 1999 (has links)
Thèses (Ph.D.)--Université de Sherbrooke (Canada), 1999. / Titre de l'écran-titre (visionné le 20 juin 2006). Publié aussi en version papier.
23

Étude expérimentale des caractéristiques dynamiques d'un jet plan intermittent.

Abd-Elmessih, Raouf Nassif, January 1900 (has links)
Th. doct.-ing.--Méc.--Toulouse--I.N.P., 1985. N°: 365.
24

Contribution à l'étude de l'écoulement entre deux cylindres coaxiaux.

Patotzki, Gérard, January 1900 (has links)
Th. 3e cycle--Méc. des fluides--Lille 1, 1977. N°: 646.
25

Simulation numérique des écoulements instationnaires internes à phases séparées /

Bayini, Ahmed, January 1900 (has links)
Th. 3e cycle--Méc. des fluides--Toulouse--I.N.P., 1983. N°: 150.
26

Buoyant miscible displacement flows of Newtonian and non-Newtonian fluids : stationary and oscillating geometries

Amiri, Amin 18 October 2019 (has links)
Cette thèse vise l’étude des écoulement de déplacement de fluides miscibles à l’intérieur d’un long tuyau stationnaire vertical et d’un tuyau en mouvement. Concernant la géométrie des mouvements, le tuyau oscille comme un pendule inversé avec une fréquence maximale faible, c’est-à-dire, ˆf= 0.2(Hz) et une oscillation maximale de faible amplitude, soit 15 (◦) par rapport à l’axe du tuyau. Les écoulement de déplacement se produisent à un nombre de Péclet élevé et aux petits nombres d’Atwood. L’accent est mis sur les types de fluides et de géométries (tuyau fixe ou en mouvement). Les approches expérimentales détaillées sont utilisées de manière intégrée. Dans cette thèse, la configuration de densité est la densité instable. La majeure partie des travaux en cours se concentre sur les écoulements de déplacement de fluides Newtoniens isovisqueux, mais nous étudions également l’écoulement de déplacement à contrainte au seuil de plasticité dans un long tuyau vertical. Pour un écoulement de déplacement Newtonien isovisqueux dans un tuyau stationnaire, nous remarquons un effet stabilisant imposé au débit principal et signalant l’existence de deux régimes d’écoulement principaux à long moment introduits par un écoulement de déplacement stable et un écoulement de déplacement instable. La transition entre ces deux régimes se produit à un nombre critique de Reynolds modifié (Ret / This thesis aims to investigate buoyant displacement flows of miscible fluids in a long, vertical stationary pipe or a moving pipe. For the case of the moving geometry, the pipe oscillates like an inverted pendulum with a small maximum frequency, i.e.ˆf= 0.2(Hz) and a small maximum oscillation amplitude, i.e. 15 (◦) with respect to the pipe axis. The displacement flows occur at the high Péclet number and small Atwood numbers. The focus is on the type of fluids and geometries (stationary or moving pipe). Detailed experimental approaches are employed in an integrated fashion. The density configuration in this thesis is the density unstable. The main part of the current work is concentrated on displacement flows of iso-viscous Newtonian fluids. We also study the yield stress displacement flow in a long vertical pipe. For iso-viscous Newtonian displacement flow in a stationary pipe, we uncover the stabilizing effect of the mean imposed flow and report the existence of two main flow regimes at long times introduced as a stable displacement flow and an unstable displacement flow. The transition between these two regimes occurs at a critical modified Reynolds number (Ret
27

Preliminary numerical simulations of a medium head Francis turbine at speed no-load

Gagnon, Pierre-Luc 17 December 2021 (has links)
Ce projet de maîtrise vise à faire une caractérisation préliminaire de l'écoulement d'une turbine Francis de moyenne chute au régime sans charge dans le cadre du projet Tr-Francis au Laboratoire de machines hydrauliques. Concrètement, le projet a validé la méthodologie numérique utilisée à l'aide de mesures expérimentales préliminaires. De plus, les simulations numérique sont permis de fournir les chargements fluides afin que des simulations structurelles puissent être réalisées. Finalement, les résultats ont permis de cibler les structures dominantes dans l'écoulement qui causent les plus importantes fluctuations de pression et ainsi aider l'équipe expérimentale à positionner les capteurs de pression et à choisir leurs plans de mesures. Pour y arriver, la méthodologie est basée sur des interpolations de mesures effectuées par Hydro-Québec au régime sans charge sur le prototype. Les données sont prises telles quelles pour les simulations effectuées à l'échelle prototype et elles sont mise à l'échelle grâce aux lois de similitude de la norme IEC 60193 pour les simulations à l'échelle modèle. L'effet des conditions d'entrée dans le domaine est étudié sur des domaines partiels avec des maillages de différentes densités ainsi que sur le domaine complet. Les pressions obtenues numériquement dans l'aspirateur sont comparées aux mesures expérimentales préliminaires et les résultats sont concordants. De plus, les poches de cavitations observées numériquement au bord de fuite remontant sur le côté pression des aubes sont, de plus, confirmées par l'expérimentation. Des analyses fréquentielles à partir des signaux de pression sont utilisées dans ce projet afin de caractériser les phénomènes. En plus d'utiliser différentes méthodes de visualisation numériques afin d'isoler et d'analyser les structures principales dans l'écoulement. Imposer un profil de vitesse uniforme comparativement à un profil de vitesse tiré de simulations de la bâche et de la conduite d'amenée ne modifie pas les résultats significativement à l'échelle modèle avec le maillage le plus fin. Lors des simulations avec le domaine complet, plusieurs phénomènes d'importances ont été observés. Notamment des tourbillons inter-aubes, qui ont une modulation à f/n = 1, une importante zone de recirculation dans l'aspirateur qui remonte jusque dans la roue, des tourbillons à l'interface entre la roue et l'aspirateur qui se développent dans la couche cisaillée, un débalancement de l'aspirateur causé par le coude ainsi qu'une zone cavitante au bord de fuite. / This thesis presents the preliminary characterization of the flow in a medium head Francis turbine at speed no-load within the scope of the Tr-Francis project at the Hydraulic Machinery. Laboratory. Concretely, the project aims at validating the numerical methodology used with preliminary experimental measurements. Moreover, the numerical simulations will provide the fluid load for the FEA simulations. Ultimately, the results will allow identifying the dominant structures in the flow causing important fluctuations. Thus helping the experimental team to find the optimal location for the pressure sensors and the measuring planes. To do so, the numerical methodology is based on the measurements interpolation performed by Hydro-Québec on the prototype turbine at speed no-load. The data are applied, as they are, as the initial conditions for the prototype scale simulations. For the model scale simulations, they are scaled down using the similitude laws from the IEC 60193 standard. The effects of the inlet conditions are studied on partial domains with different mesh densities as well as on the complete domain. To validate the simulations, the pressure measurements obtained numerically in the draft tube are compared with the preliminary measurements and the results are in good agreement. Furthermore, the trailing edge cavitation observed numerically is also visible in experimental flow visualizations. Spectral analyses of pressure signals are used to help to characterize the phenomena. Different numerical visualization techniques are also used to isolate and analyse the main flow structures. Imposing a uniform velocity profile compared to the one obtained from the penstock and spiral case simulation does not significantly affect the results at model scale with the finest grid. Many important phenomena such as modulated inter-blades vortices, an important backflow region in the draft tube coming up to the runner, vortices generated in the draft tube in the shear layer, static pressure imbalance in the draft tube caused by the elbow and trailing blade cavitation were observed on the complete domain model scale simulations.
28

Investigation des interactions Fluide-Structure-Thermique (FSTI) pour des écoulements de fluides à haute vélocité

St-Onge, Gabriel 09 November 2022 (has links)
Depuis plusieurs décennies déjà, l'industrie aérospatiale tente de repousser les limites du possible, avec des véhicules de plus en plus légers, mais qui voyagent à des vitesses de plus en plus élevées. Pour ce faire, des recherches dans le domaine des régimes d'écoulement hypersonique ont été effectuées pour mieux comprendre le comportement des fluides lorsque soumis à ces régimes d'écoulement. Cependant, pour effectuer le design de véhicules voyageant dans ces régimes d'écoulement, les interactions entre le fluide et les structures doivent être prises en compte. Il est bien connu [1; 2], que différents types d'interactions prennent place dans ces situations aérothermoélastiques, telles que des interactions force-déplacement, des interactions thermiques fluide-structure et possiblement des interactions thermochimiques. Toutes ces interactions doivent donc être prises en compte pour dresser un portrait global du comportement d'une section ou de l'ensemble d'un véhicule hypersonique. Ce mémoire a donc pour objectifs d'investiguer les phénomènes d'interaction fluide, structure et thermique (FSTI) dans un contexte d'écoulement hypersonique. Plus spécifiquement, une méthodologie de couplage multiphysique a été développée pour résoudre des problèmes aérothermoélastiques en grande déformation. La méthodologie de couplage développée est basée sur une approche partitionnée avec un couplage itératif. Ces objectifs présentent un point de vue intéressant étant donné que l'étude des cas aérothermoélastiques en grandes déformations ne semble pas, selon la revue de la littérature, avoir été explorée. Les recherches présentées dans ce mémoire tentent donc d'étudier cette voie en proposant une méthodologie de simulation numérique. De plus, à titre de contribution supplémentaire des outils numériques ont été implémentés dans une librairie maison du logiciel OpenFOAM®. Ce logiciel libre de droit facilitera la reproduction et la distribution des outils et des simulations qui sont présentées dans ce document. Le contenu de ce mémoire se divise en trois sections. Dans un premier temps, les phénomènes physiques qui sont impliqués dans ces écoulements ont été modélisés individuellement. Des modèles mathématiques sont présentés et des modèles numériques ont été validés pour s'assurer de l'implémentation adéquate des programmes. Par la suite, un environnement modulaire de simulation multiphysique sous l'environnement OpenFOAM est présenté. Cet environnement permet l'intégration de différents solveurs physiques pour solutionner différentes régions physiques dans un contexte de simulation FSI, FSTI ou d'échauffement aérodynamique. Les interactions entre les différentes régions sont gérées via des conditions limites d'interface spécifiquement conçues. De plus, un algorithme de couplage itératif basé sur une approche partitionnée est également utilisé. Cette section mettra l'accent sur l'implémentation de la méthodologie de couplage avec le logiciel OpenFOAM et les contributions pour la communauté d'utilisateurs du logiciel. Pour finir, la méthodologie de couplage multiphysique a été validée en effectuant des simulations d'interaction FSTI simples présentées dans la littérature. De plus, des simulations aérothermoélastiques complexes présentant des phénomènes de grandes déformations sont également analysées. / For several decades, the aerospace industry tries to improve their knowledge over the science of flight, to create vehicles that are lighter, but that can sustain faster speed regimes. Lately, research in the field of hypersonic flow allowed a better understanding of the fluid physics while sustaining those flow regimes. However, to design vehicles that are able to sustain these flow regimes, the interactions between the fluid and the structure must be considered. It is well known [1; 2] that several interaction phenomena will occur with those aerothermoelastic problems, such as force-displacement interactions, fluid-structure thermal interactions and in some cases thermochemical interactions. These interactions must be evaluated to understand the behaviour of a part or the overall hypersonic vehicle. The objective of this thesis is to investigate fluid, structure and thermal interactions (FSTI) phenomena for hypersonic flow regimes. More specifically, a multiphysic coupling method was developed to model aerothermoelastic problem by taking into consideration large structural deformation. The coupling methodology is based on the partitioned approach with an iterative coupling. These objectives present an interesting approach because the study of aerothermoelastic problems involving large structural deformation has not been explored, based on the literature review that was conducted for this thesis. Thus, the study of these physical phenomena will be presented in this research by proposing a numerical coupling strategy. Moreover, simulation tools were also developed using the OpenFOAM® environment. This open-source software will facilitate the reproduction and distribution of tools and simulations that are presented in this document. The thesis is divided in three sections. First, several physics that constitute the behaviour of the aerothermoelastic problematic will be modelled individually. Mathematical models will be presented and numerical models will be validated to ensure that the implementation of the code generate adequate results. Also, a modular framework for multiphysic simulation developed using OpenFOAM framework will be presented. This framework allows the integration of several physical solvers to modelled multiple physical regions for FSI, FSTI and aerodynamic heating problems. Interaction between regions are handled through specifically designed interfaces boundary conditions. An iterative coupling algorithm based on a partitioned approach is also used. This section will be focused on the implementation of the framework for OpenFOAM and the contribution for its community. In the last section, the coupling methodology will be validated with FSTI simulations. Moreover, simulations of more complexes aerothermoelastic problems will also be presented. Large deformation for those aerothermoelastic problems will also be evaluated with these last simulations.
29

Buoyant miscible displacement flows in axially rotating pipes

Lyu, Shan 02 February 2021 (has links)
En utilisant une approche principalement expérimentale, cette thèse de doctorat étudie les écoulements de déplacement miscibles flottants dans les tuyaux à rotation axiale, un sujet fondamental de la mécanique des fluides qui est également motivé par le processus de cimentation dans les constructions de puits de pétrole et de gaz. Une partie du processus de cimentation consiste à pomper un fluide lourd dans un tuyau pour éliminer/déplacer un fluide léger in situ. Nous émettons l’hypothèse qu’une rotation axiale du tuyau peut être utilisée pour améliorer le processus de déplacement, bien que sans résultats expérimentaux en laboratoire pour soutenir cette croyance. Dans ce contexte, ce travail analyse systématiquement les effets d’une rotation axiale du tuyau sur les flux de déplacement miscibles flottants en présence de la différence de densité (flottabilité), de l’angle d’inclinaison du tuyau, de la vitesse d’écoulement imposée et de la contrainte de déformation plastique du fluide déplacé. Le chapitre 1 étudie les effets de la rotation axiale du tuyau sur nos écoulements flottants en l’absence de la vitesse d’écoulement imposée (c’est-à-dire une configuration d’écoulement d’échange). Les deux fluides considérés sont iso-visqueux et newtoniens, mais ils ont une petite différence de densité. Les angles d’inclinaison des tuyaux intermédiaires sont pris en compte. Comme les deux fluides s’interpénètrent, notre objectif est de quantifier les effets de la vitesse de rotation des tuyaux sur la dynamique du front d’interpénétration, pour lesquels plusieurs corrélations empiriques sont proposées. Il s’agit notamment des corrélations pour la vitesse du front, la longueur de propagation du front et le temps de propagation du front. Les deux derniers concernent la situation où l’interpénétration des fluides s’arrête finalement lorsque la vitesse de rotation du tuyau devient importante. Le chapitre 2 étend les résultats du flux d’échange flottant du chapitre 1 à une configuration de flux de déplacement où il existe un flux imposé. Les deux fluides sont newtoniens. Un front d’attaque et un front de fuite sont observés dans le flux de déplacement. Fait intéressant, le mouvement du front arrière est fortement affecté par la vitesse de rotation. Ici, l’accent est mis sur la quantification des effets de la vitesse de rotation du tuyau sur les vitesses frontales avant et arrière. Le signe de la vitesse du front de fuite aide à classer les régimes d’écoulement en régimes d’élimination inefficaces et efficaces, pour lesquels la transition peut être justifiée en utilisant un équilibre entre l’inertie imposée, la flottabilité et les forces de rotation. iii En considérant une contrainte de déformation plastique dans le fluide déplacé, le chapitre 3 ajoute un autre paramètre à notre système d’écoulement. Ici, le déplacement d’un fluide viscoplastique (un gel de Carbopol) par un fluide newtonien dans des tuyaux à rotation axiale est étudié. Les comportements d’écoulement en termes de dynamique du front et de schémas d’écoulement sont considérés. Les effets de la rotation des tuyaux sur les vitesses frontales avant et arrière sont quantifiés. Enfin, les déplacements viscoplastiques sont comparés qualitativement et quantitativement à leurs homologues newtoniens, montrant que la contrainte de déformation plastique a un effet négligeable sur la classification du régime. / Through a mainly experimental approach, this Ph.D. thesis studies buoyant miscible displacement flows in axially rotating pipes, a fundamental fluid mechanics topic that is also motivated by the cementing process in oil and gas well constructions. A part of the cementing process involves pumping a heavy fluid into a pipe to remove/displace an in-situ light fluid. It is believed that an axial rotation of the pipe can be used to enhance the displacement process, albeit without laboratory experimental results to support this belief. In this context, this work systematically analyzes the effects of an axial rotation of the pipe on buoyant miscible displacement flows in the presence of the density difference (buoyancy), the pipe inclination angle, the imposed flow velocity and the yield stress of the displaced fluid. Chapter 1 investigates the effects of the axial rotation of the pipe on buoyant flows in the absence of the imposed flow velocity (i.e. an exchange flow configuration). The two fluids considered are iso-viscous and Newtonian, but they have a small density difference. Intermediate pipe inclination angles are considered. As the two fluids interpenetrate, our focus is to quantify the effects of the pipe rotation speed on the interpenetration front dynamics, for which several empirical correlations are proposed. These include correlations for the front velocity, the front propagation length, and the front propagation time. The two latter concern the situation where the interpenetration of the fluids eventually stops as the pipe rotation speed becomes large. Chapter 2 extends the buoyant exchange flow results of Chapter 1 to a displacement flow configuration where there exists an imposed flow. The two fluids are Newtonian. A leading front and a trailing front are observed in the displacement flow. Interestingly, the motion of the trailing front is highly affected by the rotation speed. Here, the focus is on quantifying the effects of the pipe rotation speed on the leading and trailing front velocities. The sign of the trailing front velocity helps to classify the flow regimes into inefficient and efficient removal regimes. The transition of these two regimes can be justified using a balance among imposed inertia, buoyancy and rotational forces. By considering a yield stress in the displaced fluid, Chapter 3 adds another flow parameter to our flow system. Here, the displacement of a viscoplastic fluid (i.e. a Carbopol gel) by a Newtonian fluid in axially rotating pipes is studied. The flow behaviours in terms of the front v dynamics and flow patterns are considered. The effects of the pipe rotation on the leading and trailing front velocities are quantified. Finally, the viscoplastic displacements are qualitatively and quantitatively compared against their Newtonian counterparts, showing that the yield stress has a negligible effect on the regime classification.
30

Investigation des interactions Fluide-Structure-Thermique (FSTI) pour des écoulements de fluides à haute vélocité

St-Onge, Gabriel 09 November 2022 (has links)
Depuis plusieurs décennies déjà, l'industrie aérospatiale tente de repousser les limites du possible, avec des véhicules de plus en plus légers, mais qui voyagent à des vitesses de plus en plus élevées. Pour ce faire, des recherches dans le domaine des régimes d'écoulement hypersonique ont été effectuées pour mieux comprendre le comportement des fluides lorsque soumis à ces régimes d'écoulement. Cependant, pour effectuer le design de véhicules voyageant dans ces régimes d'écoulement, les interactions entre le fluide et les structures doivent être prises en compte. Il est bien connu [1; 2], que différents types d'interactions prennent place dans ces situations aérothermoélastiques, telles que des interactions force-déplacement, des interactions thermiques fluide-structure et possiblement des interactions thermochimiques. Toutes ces interactions doivent donc être prises en compte pour dresser un portrait global du comportement d'une section ou de l'ensemble d'un véhicule hypersonique. Ce mémoire a donc pour objectifs d'investiguer les phénomènes d'interaction fluide, structure et thermique (FSTI) dans un contexte d'écoulement hypersonique. Plus spécifiquement, une méthodologie de couplage multiphysique a été développée pour résoudre des problèmes aérothermoélastiques en grande déformation. La méthodologie de couplage développée est basée sur une approche partitionnée avec un couplage itératif. Ces objectifs présentent un point de vue intéressant étant donné que l'étude des cas aérothermoélastiques en grandes déformations ne semble pas, selon la revue de la littérature, avoir été explorée. Les recherches présentées dans ce mémoire tentent donc d'étudier cette voie en proposant une méthodologie de simulation numérique. De plus, à titre de contribution supplémentaire des outils numériques ont été implémentés dans une librairie maison du logiciel OpenFOAM®. Ce logiciel libre de droit facilitera la reproduction et la distribution des outils et des simulations qui sont présentées dans ce document. Le contenu de ce mémoire se divise en trois sections. Dans un premier temps, les phénomènes physiques qui sont impliqués dans ces écoulements ont été modélisés individuellement. Des modèles mathématiques sont présentés et des modèles numériques ont été validés pour s'assurer de l'implémentation adéquate des programmes. Par la suite, un environnement modulaire de simulation multiphysique sous l'environnement OpenFOAM est présenté. Cet environnement permet l'intégration de différents solveurs physiques pour solutionner différentes régions physiques dans un contexte de simulation FSI, FSTI ou d'échauffement aérodynamique. Les interactions entre les différentes régions sont gérées via des conditions limites d'interface spécifiquement conçues. De plus, un algorithme de couplage itératif basé sur une approche partitionnée est également utilisé. Cette section mettra l'accent sur l'implémentation de la méthodologie de couplage avec le logiciel OpenFOAM et les contributions pour la communauté d'utilisateurs du logiciel. Pour finir, la méthodologie de couplage multiphysique a été validée en effectuant des simulations d'interaction FSTI simples présentées dans la littérature. De plus, des simulations aérothermoélastiques complexes présentant des phénomènes de grandes déformations sont également analysées. / For several decades, the aerospace industry tries to improve their knowledge over the science of flight, to create vehicles that are lighter, but that can sustain faster speed regimes. Lately, research in the field of hypersonic flow allowed a better understanding of the fluid physics while sustaining those flow regimes. However, to design vehicles that are able to sustain these flow regimes, the interactions between the fluid and the structure must be considered. It is well known [1; 2] that several interaction phenomena will occur with those aerothermoelastic problems, such as force-displacement interactions, fluid-structure thermal interactions and in some cases thermochemical interactions. These interactions must be evaluated to understand the behaviour of a part or the overall hypersonic vehicle. The objective of this thesis is to investigate fluid, structure and thermal interactions (FSTI) phenomena for hypersonic flow regimes. More specifically, a multiphysic coupling method was developed to model aerothermoelastic problem by taking into consideration large structural deformation. The coupling methodology is based on the partitioned approach with an iterative coupling. These objectives present an interesting approach because the study of aerothermoelastic problems involving large structural deformation has not been explored, based on the literature review that was conducted for this thesis. Thus, the study of these physical phenomena will be presented in this research by proposing a numerical coupling strategy. Moreover, simulation tools were also developed using the OpenFOAM® environment. This open-source software will facilitate the reproduction and distribution of tools and simulations that are presented in this document. The thesis is divided in three sections. First, several physics that constitute the behaviour of the aerothermoelastic problematic will be modelled individually. Mathematical models will be presented and numerical models will be validated to ensure that the implementation of the code generate adequate results. Also, a modular framework for multiphysic simulation developed using OpenFOAM framework will be presented. This framework allows the integration of several physical solvers to modelled multiple physical regions for FSI, FSTI and aerodynamic heating problems. Interaction between regions are handled through specifically designed interfaces boundary conditions. An iterative coupling algorithm based on a partitioned approach is also used. This section will be focused on the implementation of the framework for OpenFOAM and the contribution for its community. In the last section, the coupling methodology will be validated with FSTI simulations. Moreover, simulations of more complexes aerothermoelastic problems will also be presented. Large deformation for those aerothermoelastic problems will also be evaluated with these last simulations.

Page generated in 0.0588 seconds