• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Temporary binding for dynamic middleware construction and web services composition

Huang, Wanjun January 2006 (has links)
With increasing number of applications in Internet and mobile environments, distributed software systems are demanded to be more powerful and flexible, especially in terms of dynamism and security. This dissertation describes my work concerning three aspects: dynamic reconfiguration of component software, security control on middleware applications, and web services dynamic composition. <br><br> Firstly, I proposed a technology named Routing Based Workflow (RBW) to model the execution and management of collaborative components and realize temporary binding for component instances. The temporary binding means component instances are temporarily loaded into a created execution environment to execute their functions, and then are released to their repository after executions. The temporary binding allows to create an idle execution environment for all collaborative components, on which the change operations can be immediately carried out. The changes on execution environment will result in a new collaboration of all involved components, and also greatly simplifies the classical issues arising from dynamic changes, such as consistency preserving etc. <br><br> To demonstrate the feasibility of RBW, I created a dynamic secure middleware system - the Smart Data Server Version 3.0 (SDS3). In SDS3, an open source implementation of CORBA is adopted and modified as the communication infrastructure, and three secure components managed by RBW, are created to enhance the security on the access of deployed applications. SDS3 offers multi-level security control on its applications from strategy control to application-specific detail control. For the management by RBW, the strategy control of SDS3 applications could be dynamically changed by reorganizing the collaboration of the three secure components. <br><br> In addition, I created the Dynamic Services Composer (DSC) based on Apache open source projects, Apache Axis and WSIF. In DSC, RBW is employed to model the interaction and collaboration of web services and to enable the dynamic changes on the flow structure of web services. <br><br> Finally, overall performance tests were made to evaluate the efficiency of the developed RBW and SDS3. The results demonstrated that temporary binding of component instances makes slight impacts on the execution efficiency of components, and the blackout time arising from dynamic changes can be extremely reduced in any applications. / Heutige Softwareanwendungen fuer das Internet und den mobilen Einsatz erfordern bezueglich Funktionalitaet und Sicherheit immer leistungsstaerkere verteilte Softwaresysteme. Diese Dissertation befasst sich mit der dynamischen Rekonfiguration von Komponentensoftware, Sicherheitskontrolle von Middlewareanwendungen und der dynamischen Komposition von Web Services. <br><br> Zuerst wird eine Routing Based Workflow (RBW) Technologie vorgestellt, welche die Ausfuehrung und das Management von kollaborierenden Komponenten modelliert, sowie fuer die Realisierung einer temporaeren Anbindung von Komponenteninstanzen zustaendig ist. D.h., Komponenteninstanzen werden zur Ausfuehrung ihrer Funktionalitaet temporaer in eine geschaffene Ausfuehrungsumgebung geladen und nach Beendigung wieder freigegeben. Die temporaere Anbindung erlaubt das Erstellen einer Ausfuehrungsumgebung, in der Rekonfigurationen unmittelbar vollzogen werden koennen. Aenderungen der Ausfuehrungsumgebung haben neue Kollaborations-Beziehungen der Komponenten zufolge und vereinfachen stark die Schwierigkeiten wie z.B. Konsistenzerhaltung, die mit dynamischen Aenderungen verbunden sind. <br><br> Um die Durchfuehrbarkeit von RBW zu demonstrieren, wurde ein dynamisches, sicheres Middleware System erstellt - der Smart Data Server, Version 3 (SDS3). Bei SDS3 kommt eine Open Source Softwareimplementierung von CORBA zum Einsatz, die modifiziert als Kommunikationsinfrasturkutur genutzt wird. Zudem wurden drei Sicherheitskomponenten erstellt, die von RBW verwaltet werden und die Sicherheit beim Zugriff auf die eingesetzten Anwendungen erhoehen. SDS3 bietet den Anwendungen Sicherheitskontrollfunktionen auf verschiedenen Ebenen, angefangen von einer Strategiekontrolle bis zu anwendungsspezifischen Kontrollfunktionen. Mittels RBW kann die Strategiekontrolle des SDS3 dynamisch durch Reorganisation von Kollabortions-Beziehungen zwischen den Sicherheitskomponenten angepasst werden. <br><br> Neben diesem System wurde der Dynamic Service Composer (DSC) implementiert, welcher auf den Apache Open Source Projekten Apache Axis und WSIF basiert. Im DSC wird RBW eingesetzt, um die Interaktion und Zusammenarbeit von Web Services zu modellieren sowie dynamische Aenderungen der Flussstruktur von Web Services zu ermoeglichen. <br><br> Nach der Implementierung wurden Performance-Tests bezueglich RBW und SDS3 durchgefuehrt. Die Ergebnisse der Tests zeigen, dass eine temporaere Anbindung von Komponenteninstanzen nur einen geringen Einfluss auf die Ausfuehrungseffizienz von Komponeten hat. Ausserdem bestaetigen die Testergebnisse, dass die mit der dynamischen Rekonfiguration verbundene Ausfallzeit extrem niedrig ist.
2

Models, Design Methods and Tools for Improved Partial Dynamic Reconfiguration / Modelle, Entwurfsmethoden und -Werkzeuge für die partielle dynamische Rekonfiguration

Rullmann, Markus 14 October 2010 (has links) (PDF)
Partial dynamic reconfiguration of FPGAs has attracted high attention from both academia and industry in recent years. With this technique, the functionality of the programmable devices can be adapted at runtime to changing requirements. The approach allows designers to use FPGAs more efficiently: E. g. FPGA resources can be time-shared between different functions and the functions itself can be adapted to changing workloads at runtime. Thus partial dynamic reconfiguration enables a unique combination of software-like flexibility and hardware-like performance. Still there exists no common understanding on how to assess the overhead introduced by partial dynamic reconfiguration. This dissertation presents a new cost model for both the runtime and the memory overhead that results from partial dynamic reconfiguration. It is shown how the model can be incorporated into all stages of the design optimization for reconfigurable hardware. In particular digital circuits can be mapped onto FPGAs such that only small fractions of the hardware must be reconfigured at runtime, which saves time, memory, and energy. The design optimization is most efficient if it is applied during high level synthesis. This book describes how the cost model has been integrated into a new high level synthesis tool. The tool allows the designer to trade-off FPGA resource use versus reconfiguration overhead. It is shown that partial reconfiguration causes only small overhead if the design is optimized with regard to reconfiguration cost. A wide range of experimental results is provided that demonstrates the benefits of the applied method. / Partielle dynamische Rekonfiguration von FPGAs hat in den letzten Jahren große Aufmerksamkeit von Wissenschaft und Industrie auf sich gezogen. Die Technik erlaubt es, die Funktionalität von progammierbaren Bausteinen zur Laufzeit an veränderte Anforderungen anzupassen. Dynamische Rekonfiguration erlaubt es Entwicklern, FPGAs effizienter einzusetzen: z.B. können Ressourcen für verschiedene Funktionen wiederverwendet werden und die Funktionen selbst können zur Laufzeit an veränderte Verarbeitungsschritte angepasst werden. Insgesamt erlaubt partielle dynamische Rekonfiguration eine einzigartige Kombination von software-artiger Flexibilität und hardware-artiger Leistungsfähigkeit. Bis heute gibt es keine Übereinkunft darüber, wie der zusätzliche Aufwand, der durch partielle dynamische Rekonfiguration verursacht wird, zu bewerten ist. Diese Dissertation führt ein neues Kostenmodell für Laufzeit und Speicherbedarf ein, welche durch partielle dynamische Rekonfiguration verursacht wird. Es wird aufgezeigt, wie das Modell in alle Ebenen der Entwurfsoptimierung für rekonfigurierbare Hardware einbezogen werden kann. Insbesondere wird gezeigt, wie digitale Schaltungen derart auf FPGAs abgebildet werden können, sodass nur wenig Ressourcen der Hardware zur Laufzeit rekonfiguriert werden müssen. Dadurch kann Zeit, Speicher und Energie eingespart werden. Die Entwurfsoptimierung ist am effektivsten, wenn sie auf der Ebene der High-Level-Synthese angewendet wird. Diese Arbeit beschreibt, wie das Kostenmodell in ein neuartiges Werkzeug für die High-Level-Synthese integriert wurde. Das Werkzeug erlaubt es, beim Entwurf die Nutzung von FPGA-Ressourcen gegen den Rekonfigurationsaufwand abzuwägen. Es wird gezeigt, dass partielle Rekonfiguration nur wenig Kosten verursacht, wenn der Entwurf bezüglich Rekonfigurationskosten optimiert wird. Eine Anzahl von Beispielen und experimentellen Ergebnissen belegt die Vorteile der angewendeten Methodik.
3

Models, Design Methods and Tools for Improved Partial Dynamic Reconfiguration

Rullmann, Markus 26 February 2010 (has links)
Partial dynamic reconfiguration of FPGAs has attracted high attention from both academia and industry in recent years. With this technique, the functionality of the programmable devices can be adapted at runtime to changing requirements. The approach allows designers to use FPGAs more efficiently: E. g. FPGA resources can be time-shared between different functions and the functions itself can be adapted to changing workloads at runtime. Thus partial dynamic reconfiguration enables a unique combination of software-like flexibility and hardware-like performance. Still there exists no common understanding on how to assess the overhead introduced by partial dynamic reconfiguration. This dissertation presents a new cost model for both the runtime and the memory overhead that results from partial dynamic reconfiguration. It is shown how the model can be incorporated into all stages of the design optimization for reconfigurable hardware. In particular digital circuits can be mapped onto FPGAs such that only small fractions of the hardware must be reconfigured at runtime, which saves time, memory, and energy. The design optimization is most efficient if it is applied during high level synthesis. This book describes how the cost model has been integrated into a new high level synthesis tool. The tool allows the designer to trade-off FPGA resource use versus reconfiguration overhead. It is shown that partial reconfiguration causes only small overhead if the design is optimized with regard to reconfiguration cost. A wide range of experimental results is provided that demonstrates the benefits of the applied method.:1 Introduction 1 1.1 Reconfigurable Computing . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.1 Reconfigurable System on a Chip (RSOC) . . . . . . . . . . . . 4 1.1.2 Anatomy of an Application . . . . . . . . . . . . . . . . . . . . . . 6 1.1.3 RSOC Design Characteristics and Trade-offs . . . . . . . . . . . 7 1.2 Classification of Reconfigurable Architectures . . . . . . . . . . . . . . . 10 1.2.1 Partial Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.2 Runtime Reconfiguration (RTR) . . . . . . . . . . . . . . . . . . . 10 1.2.3 Multi-Context Configuration . . . . . . . . . . . . . . . . . . . . . 11 1.2.4 Fine-Grain Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.5 Coarse-Grain Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3 Reconfigurable Computing Specific Design Issues . . . . . . . . . . . . 12 1.4 Overview of this Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Reconfigurable Computing Systems – Background 17 2.1 Examples for RSOCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Partially Reconfigurable FPGAs: Xilinx Virtex Device Family . . . . . . 20 2.2.1 Virtex-II/Virtex-II Pro Logic Architecture . . . . . . . . . . . . . 20 2.2.2 Reconfiguration Architecture and Reconfiguration Control . . 21 2.3 Methods for Design Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.1 Behavioural Design Entry . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.2 Design Entry at Register-Transfer Level (RTL) . . . . . . . . . . 25 2.3.3 Xilinx Early Access Partial Reconfiguration Design Flow . . . . 26 2.4 Task Management in Reconfigurable Computing . . . . . . . . . . . . . 27 2.4.1 Online and Offline Task Management . . . . . . . . . . . . . . . 28 2.4.2 Task Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.3 Task Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4.4 Reconfiguration Runtime Overhead . . . . . . . . . . . . . . . . 31 2.5 Configuration Data Compression . . . . . . . . . . . . . . . . . . . . . . . 32 2.6 Evaluation of Reconfigurable Systems . . . . . . . . . . . . . . . . . . . . 35 2.6.1 Energy Efficiency Models . . . . . . . . . . . . . . . . . . . . . . . 35 2.6.2 Area Efficiency Models . . . . . . . . . . . . . . . . . . . . . . . . 37 2.6.3 Runtime Efficiency Models . . . . . . . . . . . . . . . . . . . . . . 37 2.7 Similarity Based Reduction of Reconfiguration Overhead . . . . . . . . 38 2.7.1 Configuration Data Generation Methods . . . . . . . . . . . . . 39 2.7.2 Device Mapping Methods . . . . . . . . . . . . . . . . . . . . . . . 40 2.7.3 Circuit Design Methods . . . . . . . . . . . . . . . . . . . . . . . . 41 2.7.4 Model for Partial Configuration . . . . . . . . . . . . . . . . . . . 44 2.8 Contributions of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3 Runtime Reconfiguration Cost and Optimization Methods 47 3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2 Reconfiguration State Graph . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2.1 Reconfiguration Time Overhead . . . . . . . . . . . . . . . . . . 52 3.2.2 Dynamic Configuration Data Overhead . . . . . . . . . . . . . . 52 3.3 Configuration Cost at Bitstream Level . . . . . . . . . . . . . . . . . . . . 54 3.4 Configuration Cost at Structural Level . . . . . . . . . . . . . . . . . . . 56 3.4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4.2 Virtual Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.4.3 Reconfiguration Costs in the VA Context . . . . . . . . . . . . . 65 3.5 Allocation Functions with Minimal Reconfiguration Costs . . . . . . . 67 3.5.1 Allocation of Node Pairs . . . . . . . . . . . . . . . . . . . . . . . 68 3.5.2 Direct Allocation of Nodes . . . . . . . . . . . . . . . . . . . . . . 76 3.5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4 Implementation Tools for Reconfigurable Computing 95 4.1 Mapping of Netlists to FPGA Resources . . . . . . . . . . . . . . . . . . . 96 4.1.1 Mapping to Device Resources . . . . . . . . . . . . . . . . . . . . 96 4.1.2 Connectivity Transformations . . . . . . . . . . . . . . . . . . . . 99 4.1.3 Mapping Variants and Reconfiguration Costs . . . . . . . . . . . 100 4.1.4 Mapping of Circuit Macros . . . . . . . . . . . . . . . . . . . . . . 101 4.1.5 Global Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.1.6 Netlist Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2 Mapping Aware Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2.1 Generalized Node Mapping . . . . . . . . . . . . . . . . . . . . . 104 4.2.2 Successive Node Allocation . . . . . . . . . . . . . . . . . . . . . 105 4.2.3 Node Allocation with Ant Colony Optimization . . . . . . . . . 107 4.2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.3 Netlist Mapping with Minimized Reconfiguration Cost . . . . . . . . . 110 4.3.1 Mapping Database . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.3.2 Mapping and Packing of Elements into Logic Blocks . . . . . . 112 4.3.3 Logic Element Selection . . . . . . . . . . . . . . . . . . . . . . . 114 4.3.4 Logic Element Selection for Min. Routing Reconfiguration . . 115 4.3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5 High-Level Synthesis for Reconfigurable Computing 125 5.1 Introduction to HLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.1.1 HLS Tool Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.1.2 Realization of the Hardware Tasks . . . . . . . . . . . . . . . . . 128 5.2 New Concepts for Task-based Reconfiguration . . . . . . . . . . . . . . 131 5.2.1 Multiple Hardware Tasks in one Reconfigurable Module . . . . 132 5.2.2 Multi-Level Reconfiguration . . . . . . . . . . . . . . . . . . . . . 133 5.2.3 Resource Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.3 Datapath Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.3.1 Task Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.3.2 Resource Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.3.3 Resource Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.3.4 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.3.5 Constraints for Scheduling and Resource Binding . . . . . . . . 151 5.4 Reconfiguration Optimized Datapath Implementation . . . . . . . . . . 153 5.4.1 Effects of Scheduling and Binding on Reconfiguration Costs . 153 5.4.2 Strategies for Resource Type Binding . . . . . . . . . . . . . . . 154 5.4.3 Strategies for Resource Instance Binding . . . . . . . . . . . . . 157 5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 5.5.1 Summary of Binding Methods and Tool Setup . . . . . . . . . . 163 5.5.2 Cost Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 5.5.3 Implementation Scenarios . . . . . . . . . . . . . . . . . . . . . . 166 5.5.4 Benchmark Characteristics . . . . . . . . . . . . . . . . . . . . . . 168 5.5.5 Benchmark Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 5.5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 6 Summary and Outlook 185 Bibliography 189 A Simulated Annealing 201 / Partielle dynamische Rekonfiguration von FPGAs hat in den letzten Jahren große Aufmerksamkeit von Wissenschaft und Industrie auf sich gezogen. Die Technik erlaubt es, die Funktionalität von progammierbaren Bausteinen zur Laufzeit an veränderte Anforderungen anzupassen. Dynamische Rekonfiguration erlaubt es Entwicklern, FPGAs effizienter einzusetzen: z.B. können Ressourcen für verschiedene Funktionen wiederverwendet werden und die Funktionen selbst können zur Laufzeit an veränderte Verarbeitungsschritte angepasst werden. Insgesamt erlaubt partielle dynamische Rekonfiguration eine einzigartige Kombination von software-artiger Flexibilität und hardware-artiger Leistungsfähigkeit. Bis heute gibt es keine Übereinkunft darüber, wie der zusätzliche Aufwand, der durch partielle dynamische Rekonfiguration verursacht wird, zu bewerten ist. Diese Dissertation führt ein neues Kostenmodell für Laufzeit und Speicherbedarf ein, welche durch partielle dynamische Rekonfiguration verursacht wird. Es wird aufgezeigt, wie das Modell in alle Ebenen der Entwurfsoptimierung für rekonfigurierbare Hardware einbezogen werden kann. Insbesondere wird gezeigt, wie digitale Schaltungen derart auf FPGAs abgebildet werden können, sodass nur wenig Ressourcen der Hardware zur Laufzeit rekonfiguriert werden müssen. Dadurch kann Zeit, Speicher und Energie eingespart werden. Die Entwurfsoptimierung ist am effektivsten, wenn sie auf der Ebene der High-Level-Synthese angewendet wird. Diese Arbeit beschreibt, wie das Kostenmodell in ein neuartiges Werkzeug für die High-Level-Synthese integriert wurde. Das Werkzeug erlaubt es, beim Entwurf die Nutzung von FPGA-Ressourcen gegen den Rekonfigurationsaufwand abzuwägen. Es wird gezeigt, dass partielle Rekonfiguration nur wenig Kosten verursacht, wenn der Entwurf bezüglich Rekonfigurationskosten optimiert wird. Eine Anzahl von Beispielen und experimentellen Ergebnissen belegt die Vorteile der angewendeten Methodik.:1 Introduction 1 1.1 Reconfigurable Computing . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.1 Reconfigurable System on a Chip (RSOC) . . . . . . . . . . . . 4 1.1.2 Anatomy of an Application . . . . . . . . . . . . . . . . . . . . . . 6 1.1.3 RSOC Design Characteristics and Trade-offs . . . . . . . . . . . 7 1.2 Classification of Reconfigurable Architectures . . . . . . . . . . . . . . . 10 1.2.1 Partial Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.2 Runtime Reconfiguration (RTR) . . . . . . . . . . . . . . . . . . . 10 1.2.3 Multi-Context Configuration . . . . . . . . . . . . . . . . . . . . . 11 1.2.4 Fine-Grain Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.5 Coarse-Grain Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3 Reconfigurable Computing Specific Design Issues . . . . . . . . . . . . 12 1.4 Overview of this Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Reconfigurable Computing Systems – Background 17 2.1 Examples for RSOCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Partially Reconfigurable FPGAs: Xilinx Virtex Device Family . . . . . . 20 2.2.1 Virtex-II/Virtex-II Pro Logic Architecture . . . . . . . . . . . . . 20 2.2.2 Reconfiguration Architecture and Reconfiguration Control . . 21 2.3 Methods for Design Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.1 Behavioural Design Entry . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.2 Design Entry at Register-Transfer Level (RTL) . . . . . . . . . . 25 2.3.3 Xilinx Early Access Partial Reconfiguration Design Flow . . . . 26 2.4 Task Management in Reconfigurable Computing . . . . . . . . . . . . . 27 2.4.1 Online and Offline Task Management . . . . . . . . . . . . . . . 28 2.4.2 Task Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.3 Task Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4.4 Reconfiguration Runtime Overhead . . . . . . . . . . . . . . . . 31 2.5 Configuration Data Compression . . . . . . . . . . . . . . . . . . . . . . . 32 2.6 Evaluation of Reconfigurable Systems . . . . . . . . . . . . . . . . . . . . 35 2.6.1 Energy Efficiency Models . . . . . . . . . . . . . . . . . . . . . . . 35 2.6.2 Area Efficiency Models . . . . . . . . . . . . . . . . . . . . . . . . 37 2.6.3 Runtime Efficiency Models . . . . . . . . . . . . . . . . . . . . . . 37 2.7 Similarity Based Reduction of Reconfiguration Overhead . . . . . . . . 38 2.7.1 Configuration Data Generation Methods . . . . . . . . . . . . . 39 2.7.2 Device Mapping Methods . . . . . . . . . . . . . . . . . . . . . . . 40 2.7.3 Circuit Design Methods . . . . . . . . . . . . . . . . . . . . . . . . 41 2.7.4 Model for Partial Configuration . . . . . . . . . . . . . . . . . . . 44 2.8 Contributions of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3 Runtime Reconfiguration Cost and Optimization Methods 47 3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2 Reconfiguration State Graph . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2.1 Reconfiguration Time Overhead . . . . . . . . . . . . . . . . . . 52 3.2.2 Dynamic Configuration Data Overhead . . . . . . . . . . . . . . 52 3.3 Configuration Cost at Bitstream Level . . . . . . . . . . . . . . . . . . . . 54 3.4 Configuration Cost at Structural Level . . . . . . . . . . . . . . . . . . . 56 3.4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4.2 Virtual Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.4.3 Reconfiguration Costs in the VA Context . . . . . . . . . . . . . 65 3.5 Allocation Functions with Minimal Reconfiguration Costs . . . . . . . 67 3.5.1 Allocation of Node Pairs . . . . . . . . . . . . . . . . . . . . . . . 68 3.5.2 Direct Allocation of Nodes . . . . . . . . . . . . . . . . . . . . . . 76 3.5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4 Implementation Tools for Reconfigurable Computing 95 4.1 Mapping of Netlists to FPGA Resources . . . . . . . . . . . . . . . . . . . 96 4.1.1 Mapping to Device Resources . . . . . . . . . . . . . . . . . . . . 96 4.1.2 Connectivity Transformations . . . . . . . . . . . . . . . . . . . . 99 4.1.3 Mapping Variants and Reconfiguration Costs . . . . . . . . . . . 100 4.1.4 Mapping of Circuit Macros . . . . . . . . . . . . . . . . . . . . . . 101 4.1.5 Global Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.1.6 Netlist Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2 Mapping Aware Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2.1 Generalized Node Mapping . . . . . . . . . . . . . . . . . . . . . 104 4.2.2 Successive Node Allocation . . . . . . . . . . . . . . . . . . . . . 105 4.2.3 Node Allocation with Ant Colony Optimization . . . . . . . . . 107 4.2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.3 Netlist Mapping with Minimized Reconfiguration Cost . . . . . . . . . 110 4.3.1 Mapping Database . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.3.2 Mapping and Packing of Elements into Logic Blocks . . . . . . 112 4.3.3 Logic Element Selection . . . . . . . . . . . . . . . . . . . . . . . 114 4.3.4 Logic Element Selection for Min. Routing Reconfiguration . . 115 4.3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5 High-Level Synthesis for Reconfigurable Computing 125 5.1 Introduction to HLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.1.1 HLS Tool Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.1.2 Realization of the Hardware Tasks . . . . . . . . . . . . . . . . . 128 5.2 New Concepts for Task-based Reconfiguration . . . . . . . . . . . . . . 131 5.2.1 Multiple Hardware Tasks in one Reconfigurable Module . . . . 132 5.2.2 Multi-Level Reconfiguration . . . . . . . . . . . . . . . . . . . . . 133 5.2.3 Resource Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.3 Datapath Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.3.1 Task Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.3.2 Resource Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.3.3 Resource Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.3.4 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.3.5 Constraints for Scheduling and Resource Binding . . . . . . . . 151 5.4 Reconfiguration Optimized Datapath Implementation . . . . . . . . . . 153 5.4.1 Effects of Scheduling and Binding on Reconfiguration Costs . 153 5.4.2 Strategies for Resource Type Binding . . . . . . . . . . . . . . . 154 5.4.3 Strategies for Resource Instance Binding . . . . . . . . . . . . . 157 5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 5.5.1 Summary of Binding Methods and Tool Setup . . . . . . . . . . 163 5.5.2 Cost Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 5.5.3 Implementation Scenarios . . . . . . . . . . . . . . . . . . . . . . 166 5.5.4 Benchmark Characteristics . . . . . . . . . . . . . . . . . . . . . . 168 5.5.5 Benchmark Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 5.5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 6 Summary and Outlook 185 Bibliography 189 A Simulated Annealing 201

Page generated in 0.0943 seconds