Spelling suggestions: "subject:"dynamometer theory""
1 |
Nonlinear flux transport dynamosMann, Peter Douglas January 2012 (has links)
No description available.
|
2 |
Interaction of spatial scales in hydromagnetic dynamosRichardson, Katy Jane January 2012 (has links)
No description available.
|
3 |
A study of convection and dynamo in rotating fluid systemsZhan, Xiaoya January 2010 (has links)
Convection in a Boussinesq fluid confined by a annular channel fast rotating about a vertical axis and uniformly heated from below, is one of our concerns in this thesis. An assumption that the channel has a sufficiently large radius in comparison with its gap-width is employed, so that the curvature effect can be neglected. The aspect ratio of the channel has great influence on the convective flow in it. Guided by the result of the linear stability analysis, we perform three-dimensional numerical simulations to investigate the convective flows under three different types of aspect ratios, which are namely the moderate or large aspect ratios, the very small aspect ratios and the moderately small aspect ratios. Also, we numerically study how convection in the channel is affected by inhomogeneous heat fluxes on sidewalls, which is a simple simulation of the thermal interaction between the Earth's core and mantle. Convection and dynamo action in a rapidly rotating, self-gravitating, Boussinesq fluid sphere is the other concern. We develop a finite element model for the dynamo problem in a whole sphere. This model is constructed by incorporating dynamo equations with globally implemented magnetic boundary conditions to a whole sphere convection model, which is also presented here. The coordinate singularity at the center usually encountered when applying the spectral method is no longer an obstacle and no nonphysical assumptions (i.e. hyper-diffusivities) are used in our model. A large effort has been made to efficiently parallelize the model. Consequently, it can take the full advantage of modern massively parallel computers. Based on this dynamo model, we investigate the dynamo process in a sphere and find that self-sustaining dynamos are more difficult to obtain in a sphere than in a spherical shell. They are activated at relatively high Rayleigh numbers. Moreover, the magnetic fields generated are not dipole-dominant, different from those generated in most dynamo simulations.
|
4 |
Origin of solar surface activity and sunspotsJabbari, Sarah January 2016 (has links)
Sunspots and active regions are two of the many manifestations of the solar magnetic field. This field plays an important role in causing phenomena such as coronal mass ejections, flares, and coronal heating. Therefore, it is important to study the origin of sunspots and active regions and determine the underlying mechanism which creates them. It is believed that flux tubes rising from the bottom of the convection zone can create sunspots. However, there are still unanswered questions about this model. In particular, flux tubes are expected to expand as they rise, hence their strength weakens and some sort of reamplification mechanism must complement this model to match the observational properties of sunspots. To compensate for the absence of such an amplification mechanism, the field strength of the flux tubes, when at the bot- tom of the convection zone, must be far stronger than present dynamo models can explain. In the last few years, there has been significant progress toward a new model of magnetic field concentrations based on the negative effective mag- netic pressure instability (NEMPI) in a highly stratified turbulent plasma. NEMPI is a large-scale instability caused by a negative contribution to the total mean-field pressure due to the suppression of the total turbulent pressure by a large-scale magnetic field. In this thesis, I study for the first time NEMPI in the presence of a dynamo-generated magnetic field in both spherical and Carte- sian geometries. The results of mean-field simulations in spherical geometry show that NEMPI and the dynamo instability can act together at the same time such that we deal with a coupled system involving both NEMPI and dynamo effects simultaneously. I also consider a particular two-layer model which was previously found to lead to the formation of bipolar magnetic structures with super-equipartition strength in the presence of a dynamo-generated field. In this model, the turbulence is forced in the entire domain, but the forcing is made helical in the lower part of the domain, and non-helical in the upper part. The study of such a system in spherical geometry showed that, when the stratification is strong enough, intense bipolar regions form and, as time passes, they expand, merge and create giant structures. To understand the underlying mechanism of the formation of such intense, long-lived bipolar structures with a sharp boundary, we performed a systematic numerical study of this model in plane parallel geometry by varying the magnetic Reynolds number, the scale separation ratio, and Coriolis number. Finally, I investigate the formation of the current sheet between bipolar regions and reconnection of oppositely orientated magnetic field lines and demonstrate that for large Lundquist numbers, S, the reconnection rate is nearly independent of S – in agreement with recent studies in identical settings.
|
5 |
A finite element method for nonlinear spherical dynamos. / CUHK electronic theses & dissertations collectionJanuary 2002 (has links)
Chan Kit Hung. / "August 2002." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (p. 132-152). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
6 |
MAGNETOHYDRODYNAMIC DYNAMOS IN THE PRESENCE OF FOSSIL MAGNETIC FIELDS.BOYER, DARRYL WILLIAM. January 1982 (has links)
A fossil magnetic field embedded in the radiative core of the Sun has been thought possible for some time now. However, such a fossil magnetic field has, a priori, not been considered a visible phenomenon due to the effects of turbulence in the solar convection zone. Since a well developed theory (referred to herein as magnetohydrodynamic dynamo theory) exists for describing the regeneration of magnetic fields in astrophysical objects like the Sun, it is possible to quantitatively evaluate the interaction of a fossil magnetic field with the magnetohydrodynamic dynamo operating in the solar convection zone. In this work, after a brief description of the basic dynamo equations, a spherical model calculation of the solar dynamo is introduced. First, we calculate the interaction of a fossil magnetic field with a dynamo in which the regeneration mechanisms of cyclonic convection and large-scale, nonuniform rotation are confined to spherical shells. It is argued that the amount of amplification or suppression of a fossil magnetic field will be smallest for a uniform distribution of cyclonic convection and nonuniform rotation, as expected in the Sun. Secondly, we calculate the interaction of a fossil magnetic field with a dynamo having a uniform distribution of cyclonic convection and large-scale, nonuniform rotation. We find that the dipole or quadrupole moments of a fossil magnetic field are suppressed by factors of -0.35 and -0.37, respectively. The dynamo modified fossil field, superimposed on the theoretically calculated magnetic fields of the solar magnetic cycle, are compared with the actual sunspot cycle and solar magnetic fields as observed by others, indicating that a fossil magnetic field may be responsible for asymmetries in the sunspot cycle and an observed solar magnetic quadrupole moment. Further observations and reduction of the data are required before the presence of a fossil magnetic field can be established. A discussion is given of the implications for the Sun if a fossil magnetic field is observed and identified. It is considered most likely that a fossil magnetic field would be a remnant of the possible Hayashi phase of a fully convective, protosun. Other possibilities also exist.
|
7 |
Estudos numéricos do dínamo solar / Numerical studies of the solar dynamoEraso, Gustavo Andres Guerrero 08 July 2009 (has links)
O ciclo solar é um dos fenômenos magnéticos mais interessantes do Universo. Embora ele tinha sido descoberto há mais de 150 anos, até agora permanece um problema em aberto para a Astrofísica. Há diferentes tipos de observações que sugerem que o ciclo solar corresponde a um processo de dínamo operando em algum lugar do interior solar. Parker foi o primeiro a tentar explicar o dínamo solar como um processo hidro-magnético acerca de 50 anos atrás. Desde então, embora tenha havido avanços significativos nas observações e investigações teóricas e numéricas, uma resposta definitiva para o dínamo solar ainda não existe. Acredita-se que no caso do Sol, pelo menos dois processos são necessários para completar o ciclo magnético observado: a transformação de um campo poloidal inicial em um campo toroidal, um processo conhecido como efeito , o qual se deve ao cisalhamento em grande escala ocasionado pela rotação diferencial; e a transformação do campo toroidal em um novo campo poloidal de polaridade oposta ao inicial. Esse segundo processo é menos conhecido e motivo de intensas discussões e pesquisas. Duas hipóteses principais foram formuladas para explicar a natureza deste processo, usualmente conhecido como efeito : a primeira, baseada na idéia de Parker de um mecanismo turbulento onde os campos poloidais resultam de movimentos convectivos ciclônicos operando em tubos de fluxo toroidais em pequena escala. Esses modelos se depararam, no entanto, com um serio inconveniente: na fase não-linear, i.e., quando a reação dinâmica do campo magnético ao fluido torna-se importante, o efeito pode ser amortecido de forma catastrófica, levando a um dínamo pouco efetivo. A segunda hipótese é baseada nas idéias de Babcock (1961) e Leighton (1969) (BL), que propuseram que o campo poloidal forma-se devido à emergência e decaimento posterior das regiões bipolares ativas. Neste modelo a circulação meridional tem um papel fundamental pois atua como mecanismo de transporte do fluxo magnético, de tal forma que a escala de tempo advectivo deve dominar sobre a escala de tempo difusiva. Por essa razão essa classe de modelos é comumente conhecida como modelo de dínamo dominado pelo transporte de fluxo, ou dínamo advectivo. Os modelos de dínamo dominados pelo transporte de fluxo são relativamente bem sucedidos em reproduzir as características em grande escala do ciclo solar, tornando-se populares entre a comunidade de Física solar, no entanto, também apresentam vários problemas amplamente discutidos na literatura. O objetivo principal deste trabalho foi identificar as principais limitações dessa classe de modelos e explorar as suas possíveis soluções. Para tal, construímos um modelo numérico bi-dimensional de dínamo cinemático baseado na teoria de campo médio e investigamos primeiro os efeitos da geometria e da espessura da tacoclina solar na amplificação do dínamo. Depois, consideramos o processo de bombeamento magnético turbulento como um mecanismo alternativo de transporte de fluxo magnético, e finalmente, incluímos a reação dinâmica do campo magnético sobre a difusividade magnética turbulenta, um processo conhecido como amortecimento de . Verificamos que é possível construir-se um modelo de dínamo dominado pelo transporte de fluxo capaz de reproduzir as observações ao considerar-se uma tacoclina de espessura fina localizada abaixo da zona convectiva. Isto limita a criação de intensos campos toroidais não desejados nas altas latitudes. Verificamos também ser importante considerar o bombeamento magnético, pois ele provê advecção do fluxo magnético para o equador e para a base da camada convectiva, o que resulta em uma correta distribuição latitudinal e temporal dos campos toroidais e também permite certa penetração desses campos nas regiões mais estáveis onde podem adquirir maior amplificação. Esse mecanismo é ainda importante para produzir a paridade correta do campo (anti-simétrica) nos dois hemisférios do Sol. Também encontramos que o amortecimento da difusividade magnética é um mecanismo fundamental para a formação de pequenas estruturas de campo toroidal com maior tempo de vida, identificadas com os tubos de fluxo, que acredita-se existirem na base da zona de convecção. Além do mais, os campos magnéticos formados graças ao amortecimento de podem ser até ~2 vezes mais intensos que as estruturas magnéticas formadas sem o seu amortecimento. Por fim, nos últimos anos, alguns trabalhos teóricos vêm chamando a atenção para o papel da conservação da helicidade magnética no processo de dínamo, dando nova vida a modelos de dínamo turbulento, como originalmente proposto por Parker. Com o objetivo de investigar o papel da helicidade magnética e de buscar uma descrição dinâmica mais realista do mecanismo de dínamo, construímos recentemente um modelo numérico de convecção tridimensional (utilizando o código MHD, PLUTO) que tenta reproduzir o cenário natural do interior solar onde teria lugar o processo de dínamo. Exploramos a evolução de um campo magnético semente imposto sobre um estado convectivo estacionário. Os resultados preliminares indicam que a convecção pode facilmente excitar o efeito de dínamo, inclusive em casos sem rotação. Porém, nos casos com rotação, o dínamo parece produzir uma maior quantidade de campo magnético médio com relação aos casos sem a rotação nos quais o campo flutuante é dominante. Estes resultados suportam a existência de um dínamo turbulento y validam a teoria de campo médio, mas uma a análise mais detalhada ainda é necessária. / The solar cycle is one of the most interesting magnetic phenomenon in the Universe. Even though it was discovered more than 150 years ago, it remains until now as an open problem in Astrophysics. There are several observational evidences that suggest that the solar cycle corresponds to a dynamo process operating at some place of the solar interior. Parker, in 1955, was the first to try to explain the solar dynamo as hydromagnetic phenomena. Since then, although there has been important improvements in the observations, theory and numerical simulations, a definitive model for the solar dynamo is still missing. There is common agreement that in the solar case, at least two processes are necessary to close the dynamo loop: the transformation of an initial poloidal field into a toroidal field, the so called Omega effect, which is due to a large scale shear caused by the diferential rotation, and the transformation of the toroidal field into a new poloidal field of opposite polarity, which is still a poorly understood process that has been the subject of intense debate and research. Two main hypotheses have been formulated in order to explain the nature of this effect, usually denominated alpha effect: the first one is based on Parker\'s idea of a turbulent mechanism where the poloidal field results from cyclonic convective motions operating at small scales in the toroidal field ropes. These models, however face an important limitation: in the non-linear regime, i.e. when the back reaction of the toroidal field on the motions becomes important, the alpha effect can be catastrophically quenched leading to an ineffective dynamo. The second hypotheses is based on the formulation of Babcock (1961) and Leighton (1969) (BL), who proposed that the poloidal field is formed due to the emergence and decay of bipolar magnetic regions. In this model the meridional circulation plays an important role by acting as conveyor belt of the magnetic flux, so that the advection time must be dominant over the diffusion time. For this reason these models are often called flux-transport dynamo models. The flux-transport dynamo models has been relatively successful in reproducing the large scale features of the solar cycle, and have become popular between the solar community. However, they also present several problems that have been widely discussed in the literature. The main goal of this work was to identify the main problems concerning the flux-transport dynamo model and to explore possible solutions for them. For this aim, we have built a two-dimensional kinematic numerical model based on the mean-field theory in order to explore first the effects of the geometry and thickness of the solar tachocline on the dynamo amplification. Then, we considered the turbulent pumping as an alternative magnetic flux advection mechanism, and finally, we included the non-linear back-reaction of the magnetic field on the turbulent magnetic diffusivity, a process known as eta-quenching. We have found that it is possible to build a flux-transport dynamo model able to reproduce the observations as long as a thin tachocline located below the convective zone is considered. This helps to prevent the amplification of undesirable strong toroidal fields at the high latitudes. We have also found that it is important to consider the turbulent magnetic pumping mechanism, because it provides magnetic field advection both equatorward and inwards, that results in a correct latitudinal and temporal distribution of the toroidal field and also allows the penetration of the toroidal fields down into the stable layers where they can acquire further amplification. Besides, this mechanism plays an important role in reproducing the correct field parity (anti-symmetric) on both solar hemispheres. We have also found that the eta-quenching may lead to the formation of long-lived small structures of toroidal field which resemble the flux-tubes that are believed to exist at the base of the convection zone. The magnetic fields that are formed thanks to the eta-quenching can be up to ~ twice as larger as the magnetic structures which are developed without this effect. Finally, a number of theoretical works in the last years have called the attention to the role of magnetic helicity conservation in the dynamo processes, giving a new life to the turbulent dynamo model as proposed by Parker. With the aim to study the role of magnetic helicity and explore a more realistic dynamical description of the dynamo mechanism, we have also recently built a 3D convective numerical model (based on the MHD-Goudunov type PLUTO code) where we try to reproduce the natural scenario of the solar interior where the dynamo might take place. We have studied the evolution of a seed field embedded in an initially steady state convection layer. Our preliminary results indicate that convection can easily drive the dynamo action, even in the case without rotation. However, in the rotating cases, the dynamo appears to produce a larger amount of large scale (coherent) magnetic field when compared to the case without rotation where small scale fluctuating fields are dominant. These results support the existence of a turbulent mean field dynamo, but furthermore detailed analysis is still required.
|
8 |
Scale selection in hydromagnetic dynamosValeria Shumaylova, Valeria January 2019 (has links)
One of the extraordinary properties of the Sun is the observed range of motion scales from the convection granules to the cyclic variation of magnetic activity. The Sun's magnetic field exhibits coherence in space and time on much larger scales than the turbulent convection that ultimately powers the dynamo. Motivated by the scale separation considerations, in this thesis we study the parametric scale selection of dynamo action. Although helioseismology has made a lot of progress in the study of the solar interior, the precise motions of plasma are still unknown. In this work, we assume that the model flow is forced with helical viscous body forces acting on different characteristic scales and weak and strong large-scale shear flows that are believed to be present near the base of the convection zone. In this thesis, we look for numerical evidence of a large-scale magnetic field relative to the characteristic scale of the model flow. The investigation is based on the simulations of incompressible MHD equations in elongated triply-periodic domains. To commence the investigation, a linear stability analysis of the coarsening instability in a one-dimensional periodic system is performed to study the stability threshold in the mean-field limit that assumes large scale separation in the system. The simulations are used to discriminate between different forms of the mean-field α -effect and domain aspect ratio. The notion of scale selection refers to methods for estimating characteristic scales. We define the dynamo scale through the characteristic scales of the underlying model flow, forcing and the realised magnetic field. The aspect ratio of the elongated domains plays a crucial role in all considered cases. In Part II, we examine the dynamo generated by the imposed model flows. The transition from large-scale dynamo at the onset to small-scale dynamo as we increase Rm is smooth and takes place in two stages: a fast transition into a predominantly small-scale magnetic energy state and a slower transition into even smaller scales. The long wavelength perturbation imposed on the ABC flow in the modulated case is not preserved in the eigenmodes of the magnetic field. In the presence of the linear (semi-linear shearing-box approximation) and the sinusoidal shearing motions, the field again undergoes a smooth transition at the slow non-sheared rate, which is associated with the balance of the advection and diffusion terms in the induction equation. Part III considers the nonlinear extension of the analysis in Part II, where the incompressible cellular and sheared flows interact with the exponentially growing magnetic field via the Lorentz force in the dynamical regime. Both sheared and non-sheared helical cellular flows become unstable to large-scale perturbations even in the limit of high viscosity. Due to the helical properties of the imposed forcing, the inverse cascade of helicity leads to energy accumulation in the largest scales of the domain, albeit the characteristic lengthscale exhibits the transitional nature at a highly reduced rate in the mean-field limit. As Rm is increased, the transition resembles that of the kinematic regime. The unique properties of the anisotropic shear reduce the componentality of the system, which in turn is able to half the rate of transition from the large-scale dynamo at the onset to a small-scale one.
|
9 |
Estudos numéricos do dínamo solar / Numerical studies of the solar dynamoGustavo Andres Guerrero Eraso 08 July 2009 (has links)
O ciclo solar é um dos fenômenos magnéticos mais interessantes do Universo. Embora ele tinha sido descoberto há mais de 150 anos, até agora permanece um problema em aberto para a Astrofísica. Há diferentes tipos de observações que sugerem que o ciclo solar corresponde a um processo de dínamo operando em algum lugar do interior solar. Parker foi o primeiro a tentar explicar o dínamo solar como um processo hidro-magnético acerca de 50 anos atrás. Desde então, embora tenha havido avanços significativos nas observações e investigações teóricas e numéricas, uma resposta definitiva para o dínamo solar ainda não existe. Acredita-se que no caso do Sol, pelo menos dois processos são necessários para completar o ciclo magnético observado: a transformação de um campo poloidal inicial em um campo toroidal, um processo conhecido como efeito , o qual se deve ao cisalhamento em grande escala ocasionado pela rotação diferencial; e a transformação do campo toroidal em um novo campo poloidal de polaridade oposta ao inicial. Esse segundo processo é menos conhecido e motivo de intensas discussões e pesquisas. Duas hipóteses principais foram formuladas para explicar a natureza deste processo, usualmente conhecido como efeito : a primeira, baseada na idéia de Parker de um mecanismo turbulento onde os campos poloidais resultam de movimentos convectivos ciclônicos operando em tubos de fluxo toroidais em pequena escala. Esses modelos se depararam, no entanto, com um serio inconveniente: na fase não-linear, i.e., quando a reação dinâmica do campo magnético ao fluido torna-se importante, o efeito pode ser amortecido de forma catastrófica, levando a um dínamo pouco efetivo. A segunda hipótese é baseada nas idéias de Babcock (1961) e Leighton (1969) (BL), que propuseram que o campo poloidal forma-se devido à emergência e decaimento posterior das regiões bipolares ativas. Neste modelo a circulação meridional tem um papel fundamental pois atua como mecanismo de transporte do fluxo magnético, de tal forma que a escala de tempo advectivo deve dominar sobre a escala de tempo difusiva. Por essa razão essa classe de modelos é comumente conhecida como modelo de dínamo dominado pelo transporte de fluxo, ou dínamo advectivo. Os modelos de dínamo dominados pelo transporte de fluxo são relativamente bem sucedidos em reproduzir as características em grande escala do ciclo solar, tornando-se populares entre a comunidade de Física solar, no entanto, também apresentam vários problemas amplamente discutidos na literatura. O objetivo principal deste trabalho foi identificar as principais limitações dessa classe de modelos e explorar as suas possíveis soluções. Para tal, construímos um modelo numérico bi-dimensional de dínamo cinemático baseado na teoria de campo médio e investigamos primeiro os efeitos da geometria e da espessura da tacoclina solar na amplificação do dínamo. Depois, consideramos o processo de bombeamento magnético turbulento como um mecanismo alternativo de transporte de fluxo magnético, e finalmente, incluímos a reação dinâmica do campo magnético sobre a difusividade magnética turbulenta, um processo conhecido como amortecimento de . Verificamos que é possível construir-se um modelo de dínamo dominado pelo transporte de fluxo capaz de reproduzir as observações ao considerar-se uma tacoclina de espessura fina localizada abaixo da zona convectiva. Isto limita a criação de intensos campos toroidais não desejados nas altas latitudes. Verificamos também ser importante considerar o bombeamento magnético, pois ele provê advecção do fluxo magnético para o equador e para a base da camada convectiva, o que resulta em uma correta distribuição latitudinal e temporal dos campos toroidais e também permite certa penetração desses campos nas regiões mais estáveis onde podem adquirir maior amplificação. Esse mecanismo é ainda importante para produzir a paridade correta do campo (anti-simétrica) nos dois hemisférios do Sol. Também encontramos que o amortecimento da difusividade magnética é um mecanismo fundamental para a formação de pequenas estruturas de campo toroidal com maior tempo de vida, identificadas com os tubos de fluxo, que acredita-se existirem na base da zona de convecção. Além do mais, os campos magnéticos formados graças ao amortecimento de podem ser até ~2 vezes mais intensos que as estruturas magnéticas formadas sem o seu amortecimento. Por fim, nos últimos anos, alguns trabalhos teóricos vêm chamando a atenção para o papel da conservação da helicidade magnética no processo de dínamo, dando nova vida a modelos de dínamo turbulento, como originalmente proposto por Parker. Com o objetivo de investigar o papel da helicidade magnética e de buscar uma descrição dinâmica mais realista do mecanismo de dínamo, construímos recentemente um modelo numérico de convecção tridimensional (utilizando o código MHD, PLUTO) que tenta reproduzir o cenário natural do interior solar onde teria lugar o processo de dínamo. Exploramos a evolução de um campo magnético semente imposto sobre um estado convectivo estacionário. Os resultados preliminares indicam que a convecção pode facilmente excitar o efeito de dínamo, inclusive em casos sem rotação. Porém, nos casos com rotação, o dínamo parece produzir uma maior quantidade de campo magnético médio com relação aos casos sem a rotação nos quais o campo flutuante é dominante. Estes resultados suportam a existência de um dínamo turbulento y validam a teoria de campo médio, mas uma a análise mais detalhada ainda é necessária. / The solar cycle is one of the most interesting magnetic phenomenon in the Universe. Even though it was discovered more than 150 years ago, it remains until now as an open problem in Astrophysics. There are several observational evidences that suggest that the solar cycle corresponds to a dynamo process operating at some place of the solar interior. Parker, in 1955, was the first to try to explain the solar dynamo as hydromagnetic phenomena. Since then, although there has been important improvements in the observations, theory and numerical simulations, a definitive model for the solar dynamo is still missing. There is common agreement that in the solar case, at least two processes are necessary to close the dynamo loop: the transformation of an initial poloidal field into a toroidal field, the so called Omega effect, which is due to a large scale shear caused by the diferential rotation, and the transformation of the toroidal field into a new poloidal field of opposite polarity, which is still a poorly understood process that has been the subject of intense debate and research. Two main hypotheses have been formulated in order to explain the nature of this effect, usually denominated alpha effect: the first one is based on Parker\'s idea of a turbulent mechanism where the poloidal field results from cyclonic convective motions operating at small scales in the toroidal field ropes. These models, however face an important limitation: in the non-linear regime, i.e. when the back reaction of the toroidal field on the motions becomes important, the alpha effect can be catastrophically quenched leading to an ineffective dynamo. The second hypotheses is based on the formulation of Babcock (1961) and Leighton (1969) (BL), who proposed that the poloidal field is formed due to the emergence and decay of bipolar magnetic regions. In this model the meridional circulation plays an important role by acting as conveyor belt of the magnetic flux, so that the advection time must be dominant over the diffusion time. For this reason these models are often called flux-transport dynamo models. The flux-transport dynamo models has been relatively successful in reproducing the large scale features of the solar cycle, and have become popular between the solar community. However, they also present several problems that have been widely discussed in the literature. The main goal of this work was to identify the main problems concerning the flux-transport dynamo model and to explore possible solutions for them. For this aim, we have built a two-dimensional kinematic numerical model based on the mean-field theory in order to explore first the effects of the geometry and thickness of the solar tachocline on the dynamo amplification. Then, we considered the turbulent pumping as an alternative magnetic flux advection mechanism, and finally, we included the non-linear back-reaction of the magnetic field on the turbulent magnetic diffusivity, a process known as eta-quenching. We have found that it is possible to build a flux-transport dynamo model able to reproduce the observations as long as a thin tachocline located below the convective zone is considered. This helps to prevent the amplification of undesirable strong toroidal fields at the high latitudes. We have also found that it is important to consider the turbulent magnetic pumping mechanism, because it provides magnetic field advection both equatorward and inwards, that results in a correct latitudinal and temporal distribution of the toroidal field and also allows the penetration of the toroidal fields down into the stable layers where they can acquire further amplification. Besides, this mechanism plays an important role in reproducing the correct field parity (anti-symmetric) on both solar hemispheres. We have also found that the eta-quenching may lead to the formation of long-lived small structures of toroidal field which resemble the flux-tubes that are believed to exist at the base of the convection zone. The magnetic fields that are formed thanks to the eta-quenching can be up to ~ twice as larger as the magnetic structures which are developed without this effect. Finally, a number of theoretical works in the last years have called the attention to the role of magnetic helicity conservation in the dynamo processes, giving a new life to the turbulent dynamo model as proposed by Parker. With the aim to study the role of magnetic helicity and explore a more realistic dynamical description of the dynamo mechanism, we have also recently built a 3D convective numerical model (based on the MHD-Goudunov type PLUTO code) where we try to reproduce the natural scenario of the solar interior where the dynamo might take place. We have studied the evolution of a seed field embedded in an initially steady state convection layer. Our preliminary results indicate that convection can easily drive the dynamo action, even in the case without rotation. However, in the rotating cases, the dynamo appears to produce a larger amount of large scale (coherent) magnetic field when compared to the case without rotation where small scale fluctuating fields are dominant. These results support the existence of a turbulent mean field dynamo, but furthermore detailed analysis is still required.
|
10 |
Nonlocal memory effects of the electromotive force by fluid motion with helicity and two-dimensional periodicityHori, Kumiko, Yoshida, Shigeo 12 1900 (has links)
No description available.
|
Page generated in 0.0552 seconds