• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Saturated Fatty Acid Blood Levels and Cardiometabolic Phenotype in Patients with HFpEF: A Secondary Analysis of the Aldo-DHF Trial

Lechner, Katharina, von Schacky, Clemens, Scherr, Johannes, Lorenz, Elke, Bock, Matthias, Lechner, Benjamin, Haller, Bernhard, Krannich, Alexander, Halle, Martin, Wachter, Rolf, Duvinage, André, Edelmann, Frank 29 February 2024 (has links)
Background: Circulating long-chain (LCSFAs) and very long-chain saturated fatty acids (VLSFAs) have been differentially linked to risk of incident heart failure (HF). In patients with heart failure with preserved ejection fraction (HFpEF), associations of blood SFA levels with patient characteristics are unknown. Methods: From the Aldo-DHF-RCT, whole blood SFAs were analyzed at baseline in n = 404 using the HS-Omega-3-Index methodology. Patient characteristics were 67 8 years, 53% female, NYHA II/III (87%/13%), ejection fraction 50%, E/e’ 7.1 1.5; and median NT-proBNP 158 ng/L (IQR 82–298). Spearman´s correlation coefficients and linear regression analyses, using sex and age as covariates, were used to describe associations of blood SFAs with metabolic phenotype, functional capacity, cardiac function, and neurohumoral activation at baseline and after 12-month follow-up (12 mFU). Results: In line with prior data supporting a potential role of de novo lipogenesis-related LCSFAs in the development of HF, we showed that baseline blood levels of C14:0 and C16:0 were associated with cardiovascular risk factors and/or lower exercise capacity in patients with HFpEF at baseline/12 mFU. Contrarily, the three major circulating VLSFAs, lignoceric acid (C24:0), behenic acid (C22:0), and arachidic acid (C20:0), as well as the LCSFA C18:0, were broadly associated with a lower risk phenotype, particularly a lower risk lipid profile. No associations were found between cardiac function and blood SFAs. Conclusions: Blood SFAs were differentially linked to biomarkers and anthropometric markers indicative of a higher- /lower-risk cardiometabolic phenotype in HFpEF patients. Blood SFA warrant further investigation as prognostic markers in HFpEF. One Sentence Summary: In patients with HFpEF, individual circulating blood SFAs were differentially associated with cardiometabolic phenotype and aerobic capacity.

Page generated in 0.0982 seconds