• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1346
  • 500
  • 386
  • 180
  • 79
  • 76
  • 73
  • 64
  • 43
  • 25
  • 24
  • 19
  • 8
  • 5
  • 4
  • Tagged with
  • 3150
  • 292
  • 284
  • 262
  • 250
  • 208
  • 206
  • 175
  • 165
  • 160
  • 160
  • 157
  • 147
  • 144
  • 144
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

New insights into methodology and interpretation of osteoarthritis. The study of Frassetto identified skeletal collection.

Zampetti, Stefania <1981> 22 April 2010 (has links)
Osteoarthritis (OA) or degenerative joint disease (DJD) is a pathology which affects the synovial joints and characterised by a focal loss of articular cartilage and subsequent bony reaction of the subcondral and marginal bone. Its etiology is best explained by a multifactorial model including: age, sex, genetic and systemic factors, other predisposing diseases and functional stress. In this study the results of the investigation of a modern identified skeletal collection will be presented. In particular, we will focus on the relationship between the presence of OA at various joints. The joint modifications have been analysed using a new methodology that allows the scoring of different degrees of expression of the features considered. Materials and Methods The sample examined comes from the Sassari identified skeletal collection (part of “Frassetto collections”). The individuals were born between 1828 and 1916 and died between 1918 and 1932. Information about sex and age is known for all the individuals. The occupation is known for 173 males and 125 females. Data concerning the occupation of the individuals indicate a preindustrial and rural society. OA has been diagnosed when eburnation (EB) or loss of morphology (LM) were present, or when at least two of the following: marginal lipping (ML), esostosis (EX) or erosion (ER), were present. For each articular surface affected a “mean score” was calculated, reflecting the “severity” of the alterations. A further “score” was calculated for each joint. In the analysis sexes and age classes were always kept separate. For the statistical analyses non parametric test were used. Results The results show there is an increase of OA with age in all the joints analyzed and in particular around 50 years and 60 years. The shoulder, the hip and the knee are the joints mainly affected with ageing while the ankle is the less affected; the correlation values confirm this result. The lesion which show the major correlation with age is the ML. In our sample males are more frequently and more severely affected by OA than females, particularly at the superior limbs, while hip and knee are similarly affected in the two sexes. Lateralization shows some positive results in particular in the right shoulder of males and in various articular surfaces especially of the superior limb of both males and females; articular surfaces and joints are quite always lateralized to the right. Occupational analyses did not show remarkable results probably because of the homogeneity of the sample; males although performing different activities are quite all employed in stressful works. No highest prevalence of knee and hip OA was found in farm-workers respect to the other males. Discussion and Conclusion In this work we propose a methodology to score the different features, necessary to diagnose OA, that allows the investigation of the severity of joint degeneration. This method is easier than the one proposed by Buikstra and Ubelaker (1994), but in the same time allows a quite detailed recording of the features. Epidemiological results can be interpreted quite simply and they are in accordance with other studies; more difficult is the interpretation of the occupational results because many questions concerning the activities performed by the individuals of the collection during their lifespan cannot be solved. Because of this, caution is suggested in the interpretation of bioarcheological specimens. With this work we hope to contribute to the discussion on the puzzling problem of the etiology of OA. The possibility of studying identified skeletons will add important data to the description of osseous features of OA, enriching the medical documentation, based on different criteria. Even if we are aware that the clinical diagnosis is different from the palaeopathological one we think our work will be useful in clarifying some epidemiological as well as pathological aspects of OA.
262

Molecular architecture of fur binding to iron-induced and - repressed genes in Helicobacter pylori

Agriesti, Francesca <1982> 23 April 2010 (has links)
The ferric uptake regulator protein Fur regulates iron-dependent gene expression in bacteria. In the human pathogen Helicobacter pylori, Fur has been shown to regulate iron-induced and iron-repressed genes. Herein we investigate the molecular mechanisms that control this differential iron-responsive Fur regulation. Hydroxyl radical footprinting showed that Fur has different binding architectures, which characterize distinct operator typologies. On operators recognized with higher affinity by holo-Fur, the protein binds to a continuous AT-rich stretch of about 20 bp, displaying an extended protection pattern. This is indicative of protein wrapping around the DNA helix. DNA binding interference assays with the minor groove binding drug distamycin A, point out that the recognition of the holo-operators occurs through the minor groove of the DNA. By contrast, on the apo-operators, Fur binds primarily to thymine dimers within a newly identified TCATTn10TT consensus element, indicative of Fur binding to one side of the DNA, in the major groove of the double helix. Reconstitution of the TCATTn10TT motif within a holo-operator results in a feature binding swap from an holo-Fur- to an apo-Fur-recognized operator, affecting both affinity and binding architecture of Fur, and conferring apo-Fur repression features in vivo. Size exclusion chromatography indicated that Fur is a dimer in solution. However, in the presence of divalent metal ions the protein is able to multimerize. Accordingly, apo-Fur binds DNA as a dimer in gel shift assays, while in presence of iron, higher order complexes are formed. Stoichiometric Ferguson analysis indicates that these complexes correspond to one or two Fur tetramers, each bound to an operator element. Together these data suggest that the apo- and holo-Fur repression mechanisms apparently rely on two distinctive modes of operator-recognition, involving respectively the readout of a specific nucleotide consensus motif in the major groove for apo-operators, and the recognition of AT-rich stretches in the minor groove for holo-operators, whereas the iron-responsive binding affinity is controlled through metal-dependent shaping of the protein structure in order to match preferentially the major or the minor groove.
263

Mediterranean brachiopods: morphological, ecological and phylogenetic aspects

Evangelisti, Francesca <1978> 22 April 2010 (has links)
The Brachiopoda of the Marine Protected Area “Secche di Tor Paterno”, Central Tyrrhenian Sea, have been investigated in order to give a first glance of the diversity of the brachiopods of this area and provide a new report on the Mediterranean Brachiopod fauna. Four species were reported: Novocrania anomala (Müller, 1776), Megathiris detruncata (Gmelin, 1790), Joania cordata (Risso,1826) and Argyrotheca cuneata (Risso,1826). For all the four species a morphological analysis was carried out. For the two most abundant species, J.cordata and A. cuneata, a morphometric study, based on thickness/width and length/width scattergrams, was carried out, in order to investigate their variability. Size-frequency distributions relative to the three dimensions of the shell were also computed, aimed at a evaluation of population dynamics of these two species. The results showed that, for both species, the parameters which most determine the rise of the shell during the growth of animal are width and length and that frequency distributions are mainly bi- or plurymodal and that they are difficult to interpret, as reported by other studies. Analysis of drill holes found on the shell of some specimens of the two same species revealed a predatory origin and that three different predators are responsible for them. Partial sequences of two different genetic markers, the Internal Transcribed Spacer 1 (ITS1) and the cytochrome oxidase subunit 1 (COI), were used to investigate the phylogenetic relationship between two populations of the eurybathic brachiopod species Gryphus vitreus (Born,1778) across the strait of Gibraltar. This represents the first genetic population study on brachiopods. Results from AMOVA and Bayesian analysis performed on 31 specimens highlighted no genetic differentiation indicating a likely panmixia, dispite the lecitotrophic development of the species.
264

Ruolo della molecola CD99 nel differenziamento osteoblastico

Sciandra, Marika <1981> 20 April 2010 (has links)
No description available.
265

Cellule staminali mesenchimali umane da molteplici tessuti adulti: caratteristiche condivise e tessuto-specificità

Lanzoni, Giacomo <1982> 14 June 2010 (has links)
L’attività di ricerca ha riguardato lo studio di popolazioni di cellule staminali mesenchimali umane (MSC) ottenute da molteplici tessuti adulti. Sono state investigate sorgenti di MSC alternative al midollo osseo, libere da conflitti etici, dotate di vantaggi per l’applicabilità clinica che vanno dalla elevata resa nel recupero cellulare alla tessuto-specificità. Le cellule ottenute dalle diverse sorgenti sono state caratterizzate immunofenotipicamente, commissionate mediante protocolli di induzione specifici per i diversi tipi cellulari ed analizzate con opportuni saggi istologici, immunoistochimici, di espressione genica e proteica. Esperimenti di cocoltura hanno permesso la descrizione di capacità immunomodulatorie e trofiche. - La placenta a termine risulta essere una ricca sorgente di cellule staminali mesenchimali (MSC). Dalla membrana amniotica, dal corion e dalla gelatina di Wharton del cordone ombelicale sono state ottenute MSC con potenzialità differenziative verso commissionamenti mesenchimali, con capacità immunomodulatorie e trofiche. Tali tessuti sono ampiamente disponibili, garantiscono una elevata resa nel recupero cellulare e sono liberi da conflitti etici. - Due popolazioni di cellule con caratteristiche di MSC sono state individuate nella mucosa e nella sottomucosa intestinale. Queste cellule possiedono caratteristiche di tessuto-specificità, sono dotate di attività trofiche ed immunomodulatorie che potrebbero essere vantaggiose per approcci di terapia cellulare in patologie quali le Malattie Infiammatorie Croniche Intestinali (IBD). - Popolazioni di cellule staminali con caratteristiche simili alle MSC sono state ottenute da isole pancreatiche. Tali popolazioni possiedono vantaggi di tessuto-specificità per approcci di terapia cellulare per il Diabete. - Sono stati investigati ed individuati marcatori molecolari (molecole HLA-G) correlati con il livello di attività immunomodulatoria delle MSC. La valutazione di tali marcatori potrebbere permettere di determinare l’attività immunosoppressiva a priori del trapianto, con l’obiettivo di scegliere le popolazioni di MSC più adatte per l’applicazione e di definirne il dosaggio. - E’ stato messa a punto una metodica e una strumentazione per il frazionamento di cellule staminali in Campo Flusso in assenza di marcatura (NEEGA-DF). Questa metodica permette di discriminare sottopopolazioni cellulari in base a caratteristiche biofisiche.
266

Composti organostannici nell'ambiente marino e membrane biologiche: risposte molecolari e biochimiche nei molluschi bivalvi

Nesci, Salvatore <1982> 07 June 2010 (has links)
Organotin compounds are worldwide diffused environmental contaminants, mainly as consequence of their extensive past use as biocides in antifouling paints. In spite of law restrictions, due to unwanted effects, organotin still persist in waters, being poorly degraded, easily resuspended from sediments and bioaccumulated in exposed organisms. The widespread toxicity and the possible threat to humans, likely to be organotin-exposed through contaminated seafood, make organotin interactions with biomolecules an intriguing biochemical topic, apart from a matter of ecotoxicological concern. Among organotins, tributyltin (TBT) is long known as the most dangerous and abundant chemical species in the Mediterranean Sea. Due to its amphiphilic nature, provided by three lipophilic arms and an electrophilic tin core, TBT can be easily incorporated in biomembranes and affect their functionality. Accordingly, it is known as a membrane-active toxicant and a mitochondrial poison. Up to now the molecular action modes of TBT are still partially unclear and poorly explored in bivalve mollusks, even if the latter play a not neglectable role in the marine trophic chain and efficiently accumulate organotins. The bivalve mollusk Mytilus galloprovincialis, selected for all experiments, is widely cultivated in the Mediterranean and currently used in ecotoxicological studies. Most work of this thesis was devoted to TBT effects on mussel mitochondria, but other possible targets of TBT were also considered. A great deal of literature points out TBT as endocrine disrupter and the masculinization of female marine gastropods, the so-called imposex, currently signals environmental organotin contamination. The hormonal status of TBT-exposed mussels and the possible interaction between hormones and contaminants in modulating microsomal hydroxilases, involved in steroid hormone and organotin detoxification, were the research topics in the period spent in Barcelona (Marco Polo fellowship). The variegated experimental approach, which consisted of two exposure experiments and in vitro tests, and the choice of selected tissues of M. galloprovincialis, the midgut gland for mitochondrial and microsomal preparations for subsequent laboratory assays and the gonads for the endocrine evaluations, aimed at drawing a clarifying pattern on the molecular mechanisms involved in organotin toxicity. TBT was promptly incorporated in midgut gland mitochondria of adult mussels exposed to 0.5 and 1.0 μg/L TBT, and partially degraded to DBT. TBT incorporation was accompanied by a decrease in the mitochondrial oligomycin-sensitive Mg-ATPase activity, while the coexistent oligomycin-insensitive fraction was unaffected. Mitochondrial fatty acids showed a clear rise in n-3 polyunsaturated fatty acids after 120 hr of TBT exposure, mainly referable to an increase in 22:6 level. TBT was also shown to inhibit the ATP hydrolytic activity of the mitochondrial F1FO complex in vitro and to promote an apparent loss of oligomycin sensitivity at higher than 1.0 μM concentration. The complex dose-dependent profile of the inhibition curve lead to the hypothesis of multiple TBT binding sites. At lower than 1.0 μM TBT concentrations the non competitive enzyme inhibition by TBT was ascribed to the non covalent binding of TBT to FO subunit. On the other hand the observed drop in oligomycin sensitivity at higher than 1.0 μM TBT could be related to the onset of covalent bonds involving thiolic groups on the enzyme structure, apparently reached only at high TBT levels. The mitochondrial respiratory complexes were in vitro affected by TBT, apart from the cytocrome c oxidase which was apparently refractory to the contaminant. The most striking inhibitory effect was shown on complex I, and ascribed to possible covalent bonds of TBT with –SH groups on the enzyme complexes. This mechanism, shouldered by the progressive decrease of free cystein residues in the presence of increasing TBT concentrations, suggests that the onset of covalent tin-sulphur bonds in distinct protein structures may constitute the molecular basis of widespread TBT effects on mitochondrial complexes. Energy production disturbances, in turn affecting energy consuming mechanisms, could be involved in other cellular changes. Mussels exposed to a wide range of TBT concentrations (20 - 200 and 2000 ng/L respectively) did not show any change in testosterone and estrogen levels in mature gonads. Most hormones were in the non-biologically active esterified form both in control and in TBT-treated mussels. Probably the endocrine status of sexually mature mussels could be refractory even to high TBT doses. In mussel digestive gland the high biological variability of microsomal 7-benzyloxy-4-trifluoromethylcoumarin-O-Debenzyloxylase (BFCOD) activity, taken as a measure of CYP3A-like efficiency, probably concealed any enzyme response to TBT exposure. On the other hand the TBT-driven enhancement of BFCOD activity in vitro was once again ascribed to covalent binding to thiol groups which, in this case, would stimulate the enzyme activity. In mussels from Barcelona harbour, a highly contaminated site, the enzyme showed a decreased affinity for the 7-benzyloxy-4-trifluoromethylcoumarin (BCF) substrate with respect to mussel sampled from Ebro Delta, a non-polluted marine site. Contaminant exposure may thus alter the kinetic features of enzymes involved in detoxification mechanisms. Contaminants and steroid hormones were clearly shown to mutually interact in the modulation of detoxification mechanisms. The xenoestrogen 17α-ethylenyl estradiol (EE2) displayed a non-competitive mixed inhibition of CYP3A-like activity by a preferential bond to the free enzyme both in Barcelona harbour and Ebro Delta mussels. The possible interaction with co-present contaminants in Barcelona harbour mussels apparently lessened the formation of the ternary complex enzyme-EE2-BCF. The whole of data confirms TBT as membrane toxicant in mussels as in other species and stresses TBT covalent binding to protein thiols as a widespread mechanism of membrane-bound-enzyme activity modulation by the contaminant.
267

Myc-mediated control of gene transcription in cancer cells

Gherardi, Samuele <1981> 20 April 2010 (has links)
The Myc oncoproteins belong to a family of transcription factors composed by Myc, N-Myc and L-Myc. The most studied components of this family are Myc and N-Myc because their expressions are frequently deregulated in a wide range of cancers. These oncoproteins can act both as activators or repressors of gene transcription. As activators, they heterodimerize with Max (Myc associated X-factor) and the heterodimer recognizes and binds a specific sequence elements (E-Box) onto gene promoters recruiting histone acetylase and inducing transcriptional activation. Myc-mediated transcriptional repression is a quite debated issue. One of the first mechanisms defined for the Myc-mediated transcriptional repression consisted in the interaction of Myc-Max complex Sp1 and/or Miz1 transcription factors already bound to gene promoters. This interaction may interfere with their activation functions by recruiting co-repressors such as Dnmt3 or HDACs. Moreover, in the absence of , Myc may interfere with the Sp1 activation function by direct interaction and subsequent recruitment of HDACs. More recently the Myc/Max complex was also shown to mediate transcriptional repression by direct binding to peculiar E-box. In this study we analyzed the role of Myc overexpression in Osteosarcoma and Neuroblastoma oncogenesis and the mechanisms underling to Myc function. Myc overexpression is known to correlate with chemoresistance in Osteosarcoma cells. We extended this study by demonstrating that c-Myc induces transcription of a panel of ABC drug transporter genes. ABCs are a large family trans-membrane transporter deeply involved in multi drug resistance. Furthermore expression levels of Myc, ABCC1, ABCC4 and ABCF1 were proved to be important prognostic tool to predict conventional therapy failure. N-Myc amplification/overexpression is the most important prognostic factor for Neuroblastoma. Cyclin G2 and Clusterin are two genes often down regulated in neuroblastoma cells. Cyclin G2 is an atypical member of Cyclin family and its expression is associated with terminal differentiation and apoptosis. Moreover it blocks cell cycle progression and induces cell growth arrest. Instead, CLU is a multifunctional protein involved in many physiological and pathological processes. Several lines of evidences support the view that CLU may act as a tumour suppressor in Neuroblastoma. In this thesis I showed that N-Myc represses CCNG2 and CLU transcription by different mechanisms. • N-Myc represses CCNG2 transcription by directly interacting with Sp1 bound in CCNG2 promoter and recruiting HDAC2. Importantly, reactivation of CCNG2 expression through epigenetic drugs partially reduces N-Myc and HDAC2 mediated cell proliferation. • N-Myc/Max complex represses CLU expression by direct binding to a peculiar E-box element on CLU promoter and by recruitment of HDACs and Polycomb Complexes, to the CLU promoter. Overall our findings strongly support the model in which Myc overexpression/amplification may contribute to some aspects of oncogenesis by a dual action: i) transcription activation of genes that confer a multidrug resistant phenotype to cancer cells; ii), transcription repression of genes involved in cell cycle inhibition and cellular differentiation.
268

Studies of OPA1 pathogenic mechanisms in Dominant Optic Atrophy and novel protein function in mitochondrial DNA stability

Vidoni, Sara <1979> 20 April 2010 (has links)
The mitochondrion is an essential cytoplasmic organelle that provides most of the energy necessary for eukaryotic cell physiology. Mitochondrial structure and functions are maintained by proteins of both mitochondrial and nuclear origin. These organelles are organized in an extended network that dynamically fuses and divides. Mitochondrial morphology results from the equilibrium between fusion and fission processes, controlled by a family of “mitochondria-shaping” proteins. It is becoming clear that defects in mitochondrial dynamics can impair mitochondrial respiration, morphology and motility, leading to apoptotic cell death in vitro and more or less severe neurodegenerative disorders in vivo in humans. Mutations in OPA1, a nuclear encoded mitochondrial protein, cause autosomal Dominant Optic Atrophy (DOA), a heterogeneous blinding disease characterized by retinal ganglion cell degeneration leading to optic neuropathy (Delettre et al., 2000; Alexander et al., 2000). OPA1 is a mitochondrial dynamin-related guanosine triphosphatase (GTPase) protein involved in mitochondrial network dynamics, cytochrome c storage and apoptosis. This protein is anchored or associated on the inner mitochondrial membrane facing the intermembrane space. Eight OPA1 isoforms resulting from alternative splicing combinations of exon 4, 4b and 5b have been described (Delettre et al., 2001). These variants greatly vary among diverse organs and the presence of specific isoforms has been associated with various mitochondrial functions. The different spliced exons encode domains included in the amino-terminal region and contribute to determine OPA1 functions (Olichon et al., 2006). It has been shown that exon 4, that is conserved throughout evolution, confers functions to OPA1 involved in maintenance of the mitochondrial membrane potential and in the fusion of the network. Conversely, exon 4b and exon 5b, which are vertebrate specific, are involved in regulation of cytochrome c release from mitochondria, and activation of apoptosis, a process restricted to vertebrates (Olichon et al., 2007). While Mgm1p has been identified thanks to its role in mtDNA maintenance, it is only recently that OPA1 has been linked to mtDNA stability. Missense mutations in OPA1 cause accumulation of multiple deletions in skeletal muscle. The syndrome associated to these mutations (DOA-1 plus) is complex, consisting of a combination of dominant optic atrophy, progressive external ophtalmoplegia, peripheral neuropathy, ataxia and deafness (Amati- Bonneau et al., 2008; Hudson et al., 2008). OPA1 is the fifth gene associated with mtDNA “breakage syndrome” together with ANT1, PolG1-2 and TYMP (Spinazzola et al., 2009). In this thesis we show for the first time that specific OPA1 isoforms associated to exon 4b are important for mtDNA stability, by anchoring the nucleoids to the inner mitochondrial membrane. Our results clearly demonstrate that OPA1 isoforms including exon 4b are intimately associated to the maintenance of the mitochondrial genome, as their silencing leads to mtDNA depletion. The mechanism leading to mtDNA loss is associated with replication inhibition in cells where exon 4b containing isoforms were down-regulated. Furthermore silencing of exon 4b associated isoforms is responsible for alteration in mtDNA-nucleoids distribution in the mitochondrial network. In this study it was evidenced that OPA1 exon 4b isoform is cleaved to provide a 10kd peptide embedded in the inner membrane by a second transmembrane domain, that seems to be crucial for mitochondrial genome maintenance and does correspond to the second transmembrane domain of the yeasts orthologue encoded by MGM1 or Msp1, which is also mandatory for this process (Diot et al., 2009; Herlan et al., 2003). Furthermore in this thesis we show that the NT-OPA1-exon 4b peptide co-immuno-precipitates with mtDNA and specifically interacts with two major components of the mitochondrial nucleoids: the polymerase gamma and Tfam. Thus, from these experiments the conclusion is that NT-OPA1- exon 4b peptide contributes to the nucleoid anchoring in the inner mitochondrial membrane, a process that is required for the initiation of mtDNA replication and for the distribution of nucleoids along the network. These data provide new crucial insights in understanding the mechanism involved in maintenance of mtDNA integrity, because they clearly demonstrate that, besides genes implicated in mtDNA replications (i.e. polymerase gamma, Tfam, twinkle and genes involved in the nucleotide pool metabolism), OPA1 and mitochondrial membrane dynamics play also an important role. Noticeably, the effect on mtDNA is different depending on the specific OPA1 isoforms down-regulated, suggesting the involvement of two different combined mechanisms. Over two hundred OPA1 mutations, spread throughout the coding region of the gene, have been described to date, including substitutions, deletions or insertions. Some mutations are predicted to generate a truncated protein inducing haploinsufficiency, whereas the missense nucleotide substitutions result in aminoacidic changes which affect conserved positions of the OPA1 protein. So far, the functional consequences of OPA1 mutations in cells from DOA patients are poorly understood. Phosphorus MR spectroscopy in patients with the c.2708delTTAG deletion revealed a defect in oxidative phosphorylation in muscles (Lodi et al., 2004). An energetic impairment has been also show in fibroblasts with the severe OPA1 R445H mutation (Amati-Bonneau et al., 2005). It has been previously reported by our group that OPA1 mutations leading to haploinsufficiency are associated in fibroblasts to an oxidative phosphorylation dysfunction, mainly involving the respiratory complex I (Zanna et al., 2008). In this study we have evaluated the energetic efficiency of a panel of skin fibroblasts derived from DOA patients, five fibroblast cell lines with OPA1 mutations causing haploinsufficiency (DOA-H) and two cell lines bearing mis-sense aminoacidic substitutions (DOA-AA), and compared with control fibroblasts. Although both types of DOA fibroblasts maintained a similar ATP content when incubated in a glucose-free medium, i.e. when forced to utilize the oxidative phosphorylation only to produce ATP, the mitochondrial ATP synthesis through complex I, measured in digitonin-permeabilized cells, was significantly reduced in cells with OPA1 haploinsufficiency only, whereas it was similar to controls in cells with the missense substitutions. Furthermore, evaluation of the mitochondrial membrane potential (DYm) in the two fibroblast lines DOA-AA and in two DOA-H fibroblasts, namely those bearing the c.2819-2A>C mutation and the c.2708delTTAG microdeletion, revealed an anomalous depolarizing response to oligomycin in DOA-H cell lines only. This finding clearly supports the hypothesis that these mutations cause a significant alteration in the respiratory chain function, which can be unmasked only when the operation of the ATP synthase is prevented. Noticeably, oligomycin-induced depolarization in these cells was almost completely prevented by preincubation with cyclosporin A, a well known inhibitor of the permeability transition pore (PTP). This results is very important because it suggests for the first time that the voltage threshold for PTP opening is altered in DOA-H fibroblasts. Although this issue has not yet been addressed in the present study, several are the mechanisms that have been proposed to lead to PTP deregulation, including in particular increased reactive oxygen species production and alteration of Ca2+ homeostasis, whose role in DOA fibroblasts PTP opening is currently under investigation. Identification of the mechanisms leading to altered threshold for PTP regulation will help our understanding of the pathophysiology of DOA, but also provide a strategy for therapeutic intervention.
269

Neuroprotective strategies against neurodegeneration in cellular model systems

Eleuteri, Simona Carmen <1979> 20 April 2010 (has links)
In the present study we analyzed new neuroprotective therapeutical strategies in PD (Parkinson’s disease) and AD (Alzheimer’s disease). Current therapeutic strategies for treating PD and AD offer mainly transient symptomatic relief but it is still impossible to block the loss of neuron and then the progression of PD and AD. There is considerable consensus that the increased production and/or aggregation of α- synuclein (α-syn) and β-amyloid peptide (Aβ), plays a central role in the pathogenesis of PD, related synucleinopathies and AD. Therefore, we identified antiamyloidogenic compounds and we tested their effect as neuroprotective drug-like molecules against α-syn and β-amyloid cytotoxicity in PC12. Herein, we show that two nitro-catechol compounds (entacapone and tolcapone) and 5 cathecol-containing compounds (dopamine, pyrogallol, gallic acid, caffeic acid and quercetin) with antioxidant and anti-inflammatory properties, are potent inhibitors of α-syn and β-amyloid oligomerization and fibrillization. Subsequently, we show that the inhibition of α-syn and β-amyloid oligomerization and fibrillization is correlated with the neuroprotection of these compounds against the α-syn and β-amyloid-induced cytotoxicity in PC12. Finally, we focused on the study of the neuroprotective role of microglia and on the possibility that the neuroprotection properties of these cells could be use as therapeutical strategy in PD and AD. Here, we have used an in vitro model to demonstrate neuroprotection of a 48 h-microglial conditioned medium (MCM) towards cerebellar granule neurons (CGNs) challenged with the neurotoxin 6-hydroxydopamine (6-OHDA), which induces a Parkinson-like neurodegeneration, with Aβ42, which induces a Alzheimer-like neurodegeneration, and glutamate, involved in the major neurodegenerative diseases. We show that MCM nearly completely protects CGNs from 6-OHDA neurotoxicity, partially from glutamate excitotoxicity but not from Aβ42 toxin.
270

Variabilità del genoma mitocondriale in una popolazione Omotica nella regione Dawro, Etiopia sud-occidentale. / Mitochondrial genome variability in an Omotic population in Dawro region, South Western Ethiopia.

Cioffi, Manuela <1978> 22 April 2010 (has links)
No description available.

Page generated in 0.0425 seconds